\section{Detailed Intermittent Execution Model} \subsection{System Description} \subsection{Execution Model} \begin{figure} \centering \begin{subfigure}{\linewidth} \includegraphics[width=\textwidth]{figs/plot_expr_8a_cropped.pdf} \caption{Trace of one power cycle.} % \label{fig:eval_voltage_trace} \end{subfigure} \begin{subfigure}{\linewidth} \includegraphics[width=\textwidth]{figs/plot_expr_8b_cropped.pdf} \caption{Detailed trace.} % \label{fig:eval_adaptivenss_finished_tasks} \end{subfigure} \caption{Voltage of the capacitor and Vdd, sampled 470uF and 1.5mA.} % \label{fig:} \end{figure} Three key observations that affect software designer's decision. \begin{itemize} \item \textbf{O1}: The capacitor voltage drops quickly to charge decoupling capacitor when system wakes-up ($t1$--$t2$). \item \textbf{O2}: The system executes at sub-voltage using the decoupling capacitor, even after power supply stops ($t4$--$t5$). \item \textbf{O3}: The decoupling capacitor discharges while the system is powered-off (after $t5$). \end{itemize} \begin{figure} \centering \includegraphics[width=\linewidth]{figs/detailed_execution_model.pdf} \caption{Traditional execution model of intermittent systems.} \label{fig:detailed_execution_model} \end{figure} \subsection{Impact on Power Efficiency} \begin{figure} \centering \includegraphics[width=\linewidth]{figs/plot_expr_5_cropped.pdf} \caption{caption} % \label{fig:introduction} \end{figure} \subsection{Impact on Predicting Power Failures} \begin{figure} \centering \includegraphics[width=\linewidth]{figs/plot_expr_6_cropped.pdf} \caption{caption} % \label{fig:introduction} \end{figure} Show percentage of execution time executed after power supply stops. \subsection{Impact of Sub-normal Voltage Execution}