OurModel.tex 2.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. \section{Detailed Intermittent Execution Model}
  2. \subsection{System Description}
  3. \label{sec:system_description}
  4. \begin{figure}
  5. \centering
  6. \includegraphics[width=\linewidth]{figs/cropped/system.pdf}
  7. \caption{A typical hardware setup of intermittent systems.}
  8. % \label{fig:introduction}
  9. \end{figure}
  10. \subsection{Execution Model}
  11. \begin{figure}
  12. \centering
  13. \begin{subfigure}{\linewidth}
  14. \includegraphics[width=\textwidth]{figs/plot_expr_8a_cropped.pdf}
  15. \caption{Trace of one power cycle.}
  16. % \label{fig:eval_voltage_trace}
  17. \end{subfigure}
  18. \begin{subfigure}{\linewidth}
  19. \includegraphics[width=\textwidth]{figs/plot_expr_8b_cropped.pdf}
  20. \caption{Detailed trace.}
  21. % \label{fig:eval_adaptivenss_finished_tasks}
  22. \end{subfigure}
  23. \caption{Voltage measurement of capacitor and Vdd (470uF, 1.5mA current supply).}
  24. % \label{fig:}
  25. \end{figure}
  26. Three key observations that affect software designer's decision.
  27. \begin{itemize}
  28. \item \textbf{O1}: The capacitor voltage drops quickly to charge decoupling capacitor when system wakes-up ($t1$--$t2$).
  29. \item \textbf{O2}: The system executes at sub-voltage using the decoupling capacitor, even after power supply stops ($t4$--$t5$).
  30. \item \textbf{O3}: The decoupling capacitor discharges while the system is powered-off (after $t5$).
  31. \end{itemize}
  32. \begin{figure}
  33. \centering
  34. \includegraphics[width=\linewidth]{figs/cropped/detailed_execution_model.pdf}
  35. \caption{Detailed execution model of intermittent systems.}
  36. \label{fig:detailed_execution_model}
  37. \end{figure}
  38. \subsection{Impact on Power Efficiency}
  39. \begin{figure}
  40. \centering
  41. \includegraphics[width=\linewidth]{figs/plot_expr_5_cropped.pdf}
  42. \caption{Distribution of energy consumed in a power cycle in different capacitor sizes (1mA current supply).}
  43. % \label{fig:introduction}
  44. \end{figure}
  45. \subsection{Impact on Predicting Power Failures}
  46. \begin{figure}
  47. \centering
  48. \includegraphics[width=\linewidth]{figs/plot_expr_6_cropped.pdf}
  49. \caption{Ratio of sub-voltage operations in total execution time.}
  50. % \label{fig:introduction}
  51. \end{figure}
  52. Show percentage of execution time executed after power supply stops.
  53. \subsection{Impact of Sub-normal Voltage Execution}
  54. \begin{figure}
  55. \centering
  56. \begin{subfigure}{0.48\linewidth}
  57. \includegraphics[width=\textwidth]{figs/plot_expr_2_cropped.pdf}
  58. \caption{Trace of one power cycle.}
  59. % \label{fig:eval_voltage_trace}
  60. \end{subfigure}
  61. \hfill
  62. \begin{subfigure}{0.48\linewidth}
  63. \includegraphics[width=\textwidth]{figs/plot_expr_2_cropped.pdf}
  64. \caption{Detailed trace.}
  65. % \label{fig:eval_adaptivenss_finished_tasks}
  66. \end{subfigure}
  67. \caption{Voltage of the capacitor and Vdd, sampled 470uF and 1.5mA.}
  68. % \label{fig:}
  69. \end{figure}