| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- \section{Detailed Intermittent Execution Model}
- \subsection{System Description}
- \label{sec:system_description}
- \begin{figure}
- \centering
- \includegraphics[width=\linewidth]{figs/cropped/system.pdf}
- \caption{A typical hardware setup of intermittent systems.}
- % \label{fig:introduction}
- \end{figure}
- \subsection{Execution Model}
- \begin{figure}
- \centering
- \begin{subfigure}{\linewidth}
- \includegraphics[width=\textwidth]{figs/plot_expr_8a_cropped.pdf}
- \caption{Trace of one power cycle.}
- % \label{fig:eval_voltage_trace}
- \vspace{5pt}
- \end{subfigure}
- \begin{subfigure}{\linewidth}
- \includegraphics[width=\textwidth]{figs/plot_expr_8b_cropped.pdf}
- \caption{Detailed trace.}
- % \label{fig:eval_adaptivenss_finished_tasks}
- \end{subfigure}
- \caption{Voltage measurement of capacitor and Vdd (470uF, 1.5mA current supply).}
- % \label{fig:}
- \end{figure}
- Three key observations that affect software designer's decision.
- \begin{itemize}
- \item \textbf{O1}: The capacitor voltage drops quickly to charge decoupling capacitor when system wakes-up ($t1$--$t2$).
- \item \textbf{O2}: The system executes at sub-voltage using the decoupling capacitor, even after power supply stops ($t4$--$t5$).
- \item \textbf{O3}: The decoupling capacitor discharges while the system is powered-off (after $t5$).
- \end{itemize}
- \begin{figure}
- \centering
- \includegraphics[width=\linewidth]{figs/cropped/detailed_execution_model.pdf}
- \caption{Detailed execution model of intermittent systems.}
- \label{fig:detailed_execution_model}
- \end{figure}
- \subsection{Impact on Power Efficiency}
- \begin{figure}
- \centering
- \includegraphics[width=\linewidth]{figs/plot_expr_5_cropped.pdf}
- \caption{Distribution of energy consumed in a power cycle in different capacitor sizes (1mA current supply).}
- % \label{fig:introduction}
- \end{figure}
- \subsection{Impact on Predicting Power Failures}
- \begin{figure}
- \centering
- \begin{subfigure}{\linewidth}
- \includegraphics[width=\textwidth]{figs/plot_expr_6a_cropped.pdf}
- \caption{Input current is 1mA.}
- % \label{fig:eval_voltage_trace}
- \vspace{5pt}
- \end{subfigure}
- \begin{subfigure}{\linewidth}
- \includegraphics[width=\textwidth]{figs/plot_expr_6b_cropped.pdf}
- \caption{Input current is 3mA.}
- % \label{fig:eval_adaptivenss_finished_tasks}
- \end{subfigure}
- \caption{Ratio of sub-voltage operations in total execution time.}
- % \label{fig:}
- \end{figure}
- Show percentage of execution time executed after power supply stops.
- \subsection{Impact of Sub-normal Voltage Execution}
- \begin{figure}
- \centering
- \begin{subfigure}{0.48\linewidth}
- \includegraphics[width=\textwidth]{figs/plot_expr_2_cropped.pdf}
- \caption{Trace of one power cycle.}
- % \label{fig:eval_voltage_trace}
- \end{subfigure}
- \hfill
- \begin{subfigure}{0.48\linewidth}
- \includegraphics[width=\textwidth]{figs/plot_expr_2_cropped.pdf}
- \caption{Detailed trace.}
- % \label{fig:eval_adaptivenss_finished_tasks}
- \end{subfigure}
- \caption{Voltage of the capacitor and Vdd, sampled 470uF and 1.5mA.}
- % \label{fig:}
- \end{figure}
- \subsection{Sensitivity to Architectural Designs}
- \begin{figure}
- \centering
- \begin{subfigure}{0.49\linewidth}
- \includegraphics[width=\textwidth]{figs/plot_expr_9_cropped.pdf}
- \caption{Trace of one power cycle.}
- % \label{fig:eval_voltage_trace}
- \end{subfigure}
- \hfill
- \begin{subfigure}{0.49\linewidth}
- \includegraphics[width=\textwidth]{figs/plot_expr_9_cropped.pdf}
- \caption{Detailed trace.}
- % \label{fig:eval_adaptivenss_finished_tasks}
- \end{subfigure}
- \caption{Voltage of the capacitor and Vdd, sampled 470uF and 1.5mA.}
- % \label{fig:}
- \end{figure}
|