/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2023 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "usb_device.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "ImC/imc_api.h" #include "ImC/imc_kernel.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ typedef StaticTask_t osStaticThreadDef_t; /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define FRAM_MEM_SIZE (0x100000) // 1 MiB = 2 * 512 * 1024 bytes #define MRAM_MEM_SIZE (0x800000) // 8 MiB = 2 * 4 * 1024 * 1024 bytes #define MEM_TYPE_MRAM (1) #define MEM_TYPE_FRAM (2) #define MEM_SIZE_HALF (3) #define MEM_SIZE_FULL (4) #define MEM_TEST_TYPE MEM_TYPE_MRAM #define MEM_TEST_SIZE MEM_SIZE_HALF #define MEM_TEST_ADDR (0x68000000U) #if !defined(MEM_TEST_TYPE) #error "Choose the memory type for test!" #endif #if !defined(MEM_TEST_SIZE) #error "Choose the memory size for test!" #endif #if (MEM_TEST_TYPE == MEM_TYPE_MRAM) #if (MEM_TEST_SIZE == MEM_SIZE_FULL) #define MEMORY_SIZE MRAM_MEM_SIZE #elif (MEM_TEST_SIZE == MEM_SIZE_HALF) #define MEMORY_SIZE (MRAM_MEM_SIZE / 2) #else #error "Invalid memory size" #endif #elif (MEM_TEST_TYPE == MEM_TYPE_FRAM) #if (MEM_TEST_SIZE == MEM_SIZE_FULL) #define MEMORY_SIZE FRAM_MEM_SIZE #elif (MEM_TEST_SIZE == MEM_SIZE_HALF) #define MEMORY_SIZE (FRAM_MEM_SIZE / 2) #else #error "Invalid memory size" #endif #else #error "Invalid memory type" #endif /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; FDCAN_HandleTypeDef hfdcan1; I2C_HandleTypeDef hi2c1; I2C_HandleTypeDef hi2c3; SPI_HandleTypeDef hspi1; SPI_HandleTypeDef hspi2; TIM_HandleTypeDef htim7; UART_HandleTypeDef huart4; UART_HandleTypeDef huart1; UART_HandleTypeDef huart2; UART_HandleTypeDef huart3; SRAM_HandleTypeDef hsram1; SRAM_HandleTypeDef hsram2; SRAM_HandleTypeDef hsram3; SRAM_HandleTypeDef hsram4; /* Definitions for taskEPS */ osThreadId_t taskEPSHandle; uint32_t taskEPSBuffer[ 256 ]; osStaticThreadDef_t taskEPSControlBlock; const osThreadAttr_t taskEPS_attributes = { .name = "taskEPS", .stack_mem = &taskEPSBuffer[0], .stack_size = sizeof(taskEPSBuffer), .cb_mem = &taskEPSControlBlock, .cb_size = sizeof(taskEPSControlBlock), .priority = (osPriority_t) osPriorityRealtime, }; /* Definitions for taskSnap */ osThreadId_t taskSnapHandle; uint32_t taskSnapBuffer[ 512 ]; osStaticThreadDef_t taskSnapControlBlock; const osThreadAttr_t taskSnap_attributes = { .name = "taskSnap", .stack_mem = &taskSnapBuffer[0], .stack_size = sizeof(taskSnapBuffer), .cb_mem = &taskSnapControlBlock, .cb_size = sizeof(taskSnapControlBlock), .priority = (osPriority_t) osPriorityRealtime, }; /* Definitions for taskAI */ osThreadId_t taskAIHandle; uint32_t taskAIBuffer[ 37968 ]; osStaticThreadDef_t taskAIControlBlock; const osThreadAttr_t taskAI_attributes = { .name = "taskAI", .stack_mem = &taskAIBuffer[0], .stack_size = sizeof(taskAIBuffer), .cb_mem = &taskAIControlBlock, .cb_size = sizeof(taskAIControlBlock), .priority = (osPriority_t) osPriorityNormal, }; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void PeriphCommonClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); static void MX_FDCAN1_Init(void); static void MX_FMC_Init(void); static void MX_I2C1_Init(void); static void MX_I2C3_Init(void); static void MX_SPI1_Init(void); static void MX_SPI2_Init(void); static void MX_TIM7_Init(void); static void MX_UART4_Init(void); static void MX_USART1_UART_Init(void); static void MX_USART2_UART_Init(void); static void MX_USART3_UART_Init(void); static void MX_ICACHE_Init(void); static void MX_GTZC_Init(void); static void MX_ADC2_Init(void); void taskEPSRunner(void *argument); void taskSnapRunner(void *argument); void taskAIRunner(void *argument); void taskImcTest(void *argument); void taskImcTest_2(void *argument); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ #ifdef __cplusplus extern "C" int _write(int32_t file, uint8_t *ptr, int32_t len) { #else int _write(int32_t file, uint8_t *ptr, int32_t len) { #endif if( HAL_UART_Transmit(&UART_HANDLER_SBC, ptr, len, len) == HAL_OK ) return len; else return 0; } void vApplicationStackOverflowHook(TaskHandle_t* pxTask , char* pcTaskName ) { __disable_irq(); //todo: Indicate Overflow with LEDs printf("stack overflow at %s\r\n", pcTaskName); for(;;) ; } int32_t hal_uart_ifx_send(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len); int32_t hal_uart_ifx_recv(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len); int32_t hal_uart_ifx_send(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len) { return (HAL_UART_Transmit((UART_HandleTypeDef*)ifx->context, buf, len, 100) == HAL_OK)? len : -1; } int32_t hal_uart_ifx_recv(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len) { return (HAL_UARTEx_ReceiveToIdle((UART_HandleTypeDef*)ifx->context, buf, len, &len, 500) == HAL_OK)? len : -1; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* Configure the peripherals common clocks */ PeriphCommonClock_Config(); /* GTZC initialisation */ MX_GTZC_Init(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC1_Init(); MX_FDCAN1_Init(); MX_FMC_Init(); MX_I2C1_Init(); MX_I2C3_Init(); MX_SPI1_Init(); MX_SPI2_Init(); MX_TIM7_Init(); MX_UART4_Init(); MX_USART1_UART_Init(); MX_USART2_UART_Init(); MX_USART3_UART_Init(); MX_ICACHE_Init(); MX_USB_Device_Init(); MX_ADC2_Init(); /* USER CODE BEGIN 2 */ #if (imcUSE_IMC_KERNEL == 1) imcInit(); #endif printf("\r\n\r\n\r\n"); printf("**************************\r\n"); printf("** TEST APP INFORMATION **\r\n"); printf(" - SBC M33 freeRTOS, truztzone, ADC test\r\n"); printf(" - 2023.10.20. 10:00\r\n"); printf("**************************\r\n"); printf("\r\n\r\n\r\n"); /* after SBC boot-up, sbc power gpio pin should be ON */ imc_sbc_power_on(); // delay(param) should be 0ms /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* creation of taskEPS */ // taskEPSHandle = osThreadNew(taskEPSRunner, NULL, &taskEPS_attributes); /* creation of taskSnap */ #if (imcUSE_IMC_KERNEL == 1) // taskSnapHandle = imcOsThreadNew(taskSnapRunner, NULL, &taskSnap_attributes); taskSnapHandle = imcOsThreadNew(taskImcTest, NULL, &taskSnap_attributes); taskEPSHandle = imcOsThreadNew(taskImcTest_2, NULL, &taskEPS_attributes); #else // taskSnapHandle = osThreadNew(taskSnapRunner, NULL, &taskSnap_attributes); #endif /* creation of taskAI */ // taskAIHandle = osThreadNew(taskAIRunner, NULL, &taskAI_attributes); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* USER CODE BEGIN RTOS_EVENTS */ /* add events, ... */ /* USER CODE END RTOS_EVENTS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) { Error_Handler(); } /** Configure LSE Drive Capability */ HAL_PWR_EnableBkUpAccess(); __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE|RCC_OSCILLATORTYPE_LSE |RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 1; RCC_OscInitStruct.PLL.PLLN = 16; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV4; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } /** Enable MSI Auto calibration */ HAL_RCCEx_EnableMSIPLLMode(); } /** * @brief Peripherals Common Clock Configuration * @retval None */ void PeriphCommonClock_Config(void) { RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the common periph clock */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB|RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1; PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_PLLSAI1; PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSAI1SOURCE_MSI; PeriphClkInit.PLLSAI1.PLLSAI1M = 1; PeriphClkInit.PLLSAI1.PLLSAI1N = 24; PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7; PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2; PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2; PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_48M2CLK|RCC_PLLSAI1_ADC1CLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_MultiModeTypeDef multimode = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure the ADC multi-mode */ multimode.Mode = ADC_MODE_INDEPENDENT; if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief ADC2 Initialization Function * @param None * @retval None */ static void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Common config */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc2.Init.LowPowerAutoWait = DISABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.NbrOfConversion = 1; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.DMAContinuousRequests = DISABLE; hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc2.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_2; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ /* USER CODE END ADC2_Init 2 */ } /** * @brief FDCAN1 Initialization Function * @param None * @retval None */ static void MX_FDCAN1_Init(void) { /* USER CODE BEGIN FDCAN1_Init 0 */ /* USER CODE END FDCAN1_Init 0 */ /* USER CODE BEGIN FDCAN1_Init 1 */ /* USER CODE END FDCAN1_Init 1 */ hfdcan1.Instance = FDCAN1; hfdcan1.Init.ClockDivider = FDCAN_CLOCK_DIV1; hfdcan1.Init.FrameFormat = FDCAN_FRAME_CLASSIC; hfdcan1.Init.Mode = FDCAN_MODE_NORMAL; hfdcan1.Init.AutoRetransmission = DISABLE; hfdcan1.Init.TransmitPause = DISABLE; hfdcan1.Init.ProtocolException = DISABLE; hfdcan1.Init.NominalPrescaler = 16; hfdcan1.Init.NominalSyncJumpWidth = 1; hfdcan1.Init.NominalTimeSeg1 = 2; hfdcan1.Init.NominalTimeSeg2 = 2; hfdcan1.Init.DataPrescaler = 1; hfdcan1.Init.DataSyncJumpWidth = 1; hfdcan1.Init.DataTimeSeg1 = 1; hfdcan1.Init.DataTimeSeg2 = 1; hfdcan1.Init.StdFiltersNbr = 0; hfdcan1.Init.ExtFiltersNbr = 0; hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION; if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN FDCAN1_Init 2 */ /* USER CODE END FDCAN1_Init 2 */ } /** * @brief GTZC Initialization Function * @param None * @retval None */ static void MX_GTZC_Init(void) { /* USER CODE BEGIN GTZC_Init 0 */ /* USER CODE END GTZC_Init 0 */ /* USER CODE BEGIN GTZC_Init 1 */ /* USER CODE END GTZC_Init 1 */ /* USER CODE BEGIN GTZC_Init 2 */ /* USER CODE END GTZC_Init 2 */ } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.Timing = 0x00707CBB; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /** Configure Analogue filter */ if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK) { Error_Handler(); } /** Configure Digital filter */ if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief I2C3 Initialization Function * @param None * @retval None */ static void MX_I2C3_Init(void) { /* USER CODE BEGIN I2C3_Init 0 */ /* USER CODE END I2C3_Init 0 */ /* USER CODE BEGIN I2C3_Init 1 */ /* USER CODE END I2C3_Init 1 */ hi2c3.Instance = I2C3; hi2c3.Init.Timing = 0x00707CBB; hi2c3.Init.OwnAddress1 = 0; hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c3.Init.OwnAddress2 = 0; hi2c3.Init.OwnAddress2Masks = I2C_OA2_NOMASK; hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c3) != HAL_OK) { Error_Handler(); } /** Configure Analogue filter */ if (HAL_I2CEx_ConfigAnalogFilter(&hi2c3, I2C_ANALOGFILTER_ENABLE) != HAL_OK) { Error_Handler(); } /** Configure Digital filter */ if (HAL_I2CEx_ConfigDigitalFilter(&hi2c3, 0) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C3_Init 2 */ /* USER CODE END I2C3_Init 2 */ } /** * @brief ICACHE Initialization Function * @param None * @retval None */ static void MX_ICACHE_Init(void) { /* USER CODE BEGIN ICACHE_Init 0 */ /* USER CODE END ICACHE_Init 0 */ /* USER CODE BEGIN ICACHE_Init 1 */ /* USER CODE END ICACHE_Init 1 */ /** Enable instruction cache in 1-way (direct mapped cache) */ if (HAL_ICACHE_ConfigAssociativityMode(ICACHE_1WAY) != HAL_OK) { Error_Handler(); } if (HAL_ICACHE_Enable() != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ICACHE_Init 2 */ /* USER CODE END ICACHE_Init 2 */ } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void) { /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_4BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_HARD_OUTPUT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /** * @brief SPI2 Initialization Function * @param None * @retval None */ static void MX_SPI2_Init(void) { /* USER CODE BEGIN SPI2_Init 0 */ /* USER CODE END SPI2_Init 0 */ /* USER CODE BEGIN SPI2_Init 1 */ /* USER CODE END SPI2_Init 1 */ /* SPI2 parameter configuration*/ hspi2.Instance = SPI2; hspi2.Init.Mode = SPI_MODE_MASTER; hspi2.Init.Direction = SPI_DIRECTION_2LINES; hspi2.Init.DataSize = SPI_DATASIZE_4BIT; hspi2.Init.CLKPolarity = SPI_POLARITY_LOW; hspi2.Init.CLKPhase = SPI_PHASE_1EDGE; hspi2.Init.NSS = SPI_NSS_HARD_OUTPUT; hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi2.Init.TIMode = SPI_TIMODE_DISABLE; hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi2.Init.CRCPolynomial = 7; hspi2.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; hspi2.Init.NSSPMode = SPI_NSS_PULSE_ENABLE; if (HAL_SPI_Init(&hspi2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI2_Init 2 */ /* USER CODE END SPI2_Init 2 */ } /** * @brief TIM7 Initialization Function * @param None * @retval None */ static void MX_TIM7_Init(void) { /* USER CODE BEGIN TIM7_Init 0 */ /* USER CODE END TIM7_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM7_Init 1 */ /* USER CODE END TIM7_Init 1 */ htim7.Instance = TIM7; htim7.Init.Prescaler = 0; htim7.Init.CounterMode = TIM_COUNTERMODE_UP; htim7.Init.Period = 65535; htim7.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim7) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim7, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM7_Init 2 */ /* USER CODE END TIM7_Init 2 */ } /** * @brief UART4 Initialization Function * @param None * @retval None */ static void MX_UART4_Init(void) { /* USER CODE BEGIN UART4_Init 0 */ /* USER CODE END UART4_Init 0 */ /* USER CODE BEGIN UART4_Init 1 */ /* USER CODE END UART4_Init 1 */ huart4.Instance = UART4; huart4.Init.BaudRate = 115200; huart4.Init.WordLength = UART_WORDLENGTH_8B; huart4.Init.StopBits = UART_STOPBITS_1; huart4.Init.Parity = UART_PARITY_NONE; huart4.Init.Mode = UART_MODE_TX_RX; huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart4.Init.OverSampling = UART_OVERSAMPLING_16; huart4.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart4.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart4.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart4) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart4, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart4, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart4) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN UART4_Init 2 */ /* USER CODE END UART4_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief USART3 Initialization Function * @param None * @retval None */ static void MX_USART3_UART_Init(void) { /* USER CODE BEGIN USART3_Init 0 */ /* USER CODE END USART3_Init 0 */ /* USER CODE BEGIN USART3_Init 1 */ /* * use below code if code is re-generated by .ioc modification #if CAM_CHANGE_BAUDRATE UART_HANDLER_CAM.Init.BaudRate = 38400; #else UART_HANDLER_CAM.Init.BaudRate = 115200; #endif */ /* USER CODE END USART3_Init 1 */ huart3.Instance = USART3; huart3.Init.BaudRate = 115200; huart3.Init.WordLength = UART_WORDLENGTH_8B; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.Mode = UART_MODE_TX_RX; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart3.Init.OverSampling = UART_OVERSAMPLING_16; huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart3.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart3) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart3, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart3, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart3) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART3_Init 2 */ /* USER CODE END USART3_Init 2 */ } /* FMC initialization function */ static void MX_FMC_Init(void) { /* USER CODE BEGIN FMC_Init 0 */ /* USER CODE END FMC_Init 0 */ FMC_NORSRAM_TimingTypeDef Timing = {0}; /* USER CODE BEGIN FMC_Init 1 */ /* USER CODE END FMC_Init 1 */ /** Perform the SRAM1 memory initialization sequence */ hsram1.Instance = FMC_NORSRAM_DEVICE; hsram1.Extended = FMC_NORSRAM_EXTENDED_DEVICE; /* hsram1.Init */ hsram1.Init.NSBank = FMC_NORSRAM_BANK1; hsram1.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE; hsram1.Init.MemoryType = FMC_MEMORY_TYPE_SRAM; hsram1.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16; hsram1.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE; hsram1.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW; hsram1.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS; hsram1.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE; hsram1.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE; hsram1.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE; hsram1.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE; hsram1.Init.WriteBurst = FMC_WRITE_BURST_DISABLE; hsram1.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY; hsram1.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE; hsram1.Init.NBLSetupTime = 0; hsram1.Init.PageSize = FMC_PAGE_SIZE_NONE; hsram1.Init.MaxChipSelectPulse = DISABLE; /* Timing */ Timing.AddressSetupTime = 15; Timing.AddressHoldTime = 15; Timing.DataSetupTime = 30; Timing.DataHoldTime = 0; Timing.BusTurnAroundDuration = 2; Timing.CLKDivision = 16; Timing.DataLatency = 17; Timing.AccessMode = FMC_ACCESS_MODE_A; /* ExtTiming */ if (HAL_SRAM_Init(&hsram1, &Timing, NULL) != HAL_OK) { Error_Handler( ); } /** Perform the SRAM2 memory initialization sequence */ hsram2.Instance = FMC_NORSRAM_DEVICE; hsram2.Extended = FMC_NORSRAM_EXTENDED_DEVICE; /* hsram2.Init */ hsram2.Init.NSBank = FMC_NORSRAM_BANK2; hsram2.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE; hsram2.Init.MemoryType = FMC_MEMORY_TYPE_SRAM; hsram2.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16; hsram2.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE; hsram2.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW; hsram2.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS; hsram2.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE; hsram2.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE; hsram2.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE; hsram2.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE; hsram2.Init.WriteBurst = FMC_WRITE_BURST_DISABLE; hsram2.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY; hsram2.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE; hsram2.Init.NBLSetupTime = 0; hsram2.Init.PageSize = FMC_PAGE_SIZE_NONE; hsram2.Init.MaxChipSelectPulse = DISABLE; /* Timing */ Timing.AddressSetupTime = 15; Timing.AddressHoldTime = 15; Timing.DataSetupTime = 30; Timing.DataHoldTime = 0; Timing.BusTurnAroundDuration = 2; Timing.CLKDivision = 16; Timing.DataLatency = 17; Timing.AccessMode = FMC_ACCESS_MODE_A; /* ExtTiming */ if (HAL_SRAM_Init(&hsram2, &Timing, NULL) != HAL_OK) { Error_Handler( ); } /** Perform the SRAM3 memory initialization sequence */ hsram3.Instance = FMC_NORSRAM_DEVICE; hsram3.Extended = FMC_NORSRAM_EXTENDED_DEVICE; /* hsram3.Init */ hsram3.Init.NSBank = FMC_NORSRAM_BANK3; hsram3.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE; hsram3.Init.MemoryType = FMC_MEMORY_TYPE_PSRAM; hsram3.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16; hsram3.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE; hsram3.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW; hsram3.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS; hsram3.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE; hsram3.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE; hsram3.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE; hsram3.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE; hsram3.Init.WriteBurst = FMC_WRITE_BURST_DISABLE; hsram3.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY; hsram3.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE; hsram3.Init.NBLSetupTime = 0; hsram3.Init.PageSize = FMC_PAGE_SIZE_NONE; hsram3.Init.MaxChipSelectPulse = DISABLE; /* Timing */ Timing.AddressSetupTime = 15; Timing.AddressHoldTime = 15; Timing.DataSetupTime = 30; Timing.DataHoldTime = 0; Timing.BusTurnAroundDuration = 2; Timing.CLKDivision = 16; Timing.DataLatency = 17; Timing.AccessMode = FMC_ACCESS_MODE_A; /* ExtTiming */ if (HAL_SRAM_Init(&hsram3, &Timing, NULL) != HAL_OK) { Error_Handler( ); } /** Perform the SRAM4 memory initialization sequence */ hsram4.Instance = FMC_NORSRAM_DEVICE; hsram4.Extended = FMC_NORSRAM_EXTENDED_DEVICE; /* hsram4.Init */ hsram4.Init.NSBank = FMC_NORSRAM_BANK4; hsram4.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE; hsram4.Init.MemoryType = FMC_MEMORY_TYPE_SRAM; hsram4.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16; hsram4.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE; hsram4.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW; hsram4.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS; hsram4.Init.WriteOperation = FMC_WRITE_OPERATION_DISABLE; hsram4.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE; hsram4.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE; hsram4.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE; hsram4.Init.WriteBurst = FMC_WRITE_BURST_DISABLE; hsram4.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY; hsram4.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE; hsram4.Init.NBLSetupTime = 0; hsram4.Init.PageSize = FMC_PAGE_SIZE_NONE; hsram4.Init.MaxChipSelectPulse = DISABLE; /* Timing */ Timing.AddressSetupTime = 15; Timing.AddressHoldTime = 15; Timing.DataSetupTime = 255; Timing.DataHoldTime = 0; Timing.BusTurnAroundDuration = 15; Timing.CLKDivision = 16; Timing.DataLatency = 17; Timing.AccessMode = FMC_ACCESS_MODE_A; /* ExtTiming */ if (HAL_SRAM_Init(&hsram4, &Timing, NULL) != HAL_OK) { Error_Handler( ); } /* USER CODE BEGIN FMC_Init 2 */ /* USER CODE END FMC_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); HAL_PWREx_EnableVddIO2(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_11, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOG, GPIO_PIN_6|GPIO_PIN_11|GPIO_PIN_15, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_3, GPIO_PIN_RESET); /*Configure GPIO pins : PC13 PC6 */ GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pins : PF6 PF7 PF11 */ GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOF, &GPIO_InitStruct); /*Configure GPIO pins : PF8 PF9 PF10 */ GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOF, &GPIO_InitStruct); /*Configure GPIO pin : PB2 */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : PG6 PG15 */ GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOG, &GPIO_InitStruct); /*Configure GPIO pin : PC7 */ GPIO_InitStruct.Pin = GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : PA8 */ GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : PD2 */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF12_SDMMC1; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pin : PD3 */ GPIO_InitStruct.Pin = GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pin : PG11 */ GPIO_InitStruct.Pin = GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(GPIOG, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /* USER CODE BEGIN Header_taskEPSRunner */ /** * @brief Function implementing the taskEPS thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_taskEPSRunner */ void taskEPSRunner(void *argument) { /* USER CODE BEGIN 5 */ #if (EPS_CAP_VOLT_ADC) int capacitor_voltage0 = 0; //int capacitor_voltage1 = 0; /* Infinite loop */ for(;;) { capacitor_voltage0 = measure_voltage(ADC_HANDLER_SBC, EPS_CAP_ID_SBC); //capacitor_voltage1 = measure_voltage(ADC_HANDLER_CAM, EPS_CAP_ID_CAM); //printf("\t\t\t\t\t\t[EPS] CAP VOLT: %d.%03d, %d.%03d\r\n", capacitor_voltage0/1000, capacitor_voltage0%1000, capacitor_voltage1/1000, capacitor_voltage1%1000); if (capacitor_voltage0 < EPS_CAP_VOLT_LOW_THRESHOLD_SBC) { printf("[EPS] CAP#%d < %dmV (TODO JIT CHECKPOINT)\r\n", EPS_CAP_ID_SBC, EPS_CAP_VOLT_LOW_THRESHOLD_SBC); // TODO: JIT CHECKPOINT imc_sbc_power_off(); } osDelay(DELAY_AFTER_WORK); } #endif #if (EPS_CAP_VOLT_GPIO) /* energy_level: 1~7, and SBC power off when the level is 1 */ uint8_t energy_level_prev = 8; uint8_t energy_level_curr = 8; /* Infinite loop */ for(;;) { energy_level_curr = imc_get_energy_level(); if (energy_level_curr != energy_level_prev) { printf("[EPS] E Level: %d\r\n", energy_level_curr); if (energy_level_curr <= EPS_SBC_OFF_LEVEL) { imc_sbc_power_off(); } energy_level_prev = energy_level_curr; } osDelay(DELAY_AFTER_WORK); } #endif /* USER CODE END 5 */ } /* USER CODE BEGIN Header_taskSnapRunner */ /** * @brief Function implementing the taskSnap thread. * @param argument: Not used * @retval None */ uint32_t trial = 1; extern uint16_t ilen; /* USER CODE END Header_taskSnapRunner */ void taskSnapRunner(void *argument) { /* USER CODE BEGIN taskSnapRunner */ sc03mpd_ifx_t ifx = { .context = (void*)&UART_HANDLER_CAM, .sendif = hal_uart_ifx_send, .recvif = hal_uart_ifx_recv, }; uint8_t error_count = 0; /* Infinite loop */ while (1) { printf ("\r\n\r\n\r\n#%ld\r\n\r\n", trial); trial++; // osSemaphoreWait(empty, osWaitForever); #if EPS_CAP_VOLT_ADC SC03MPD_ASSERT(imc_sc03mpd_cap_check (ADC_HANDLER_CAM), "[CAM] FAILED CAP volt", ERROR) #endif /* * 2022. 11. 10. TEST for EPS-SBC-CAM; SBC controls CAM ON/OFF; KETI EPS does NOT wait 2.5s for CAM init. */ imc_cam_power_on(); // (M33) moved from imc_sc03mpd_init printf("[CAM] wait %dms for boot-up\r\n", DELAY_AFTER_POWERUP); osDelay (DELAY_AFTER_POWERUP); MX_USART3_UART_Init(); // (M33) moved from imc_sc03mpd_init SC03MPD_ASSERT(imc_sc03mpd_init(&ifx), "[CAM] FAILED init", ERROR) /* execute once when change CAM default baudrate */ #if CAM_CHANGE_BAUDRATE sc03mpd_set_baud(&ifx, SC03MPD_BDR_115200, 1); // default: SC03MPD_BDR_38400 printf ("[CAM] OK change default baudrate"); while (1) { osDelay(1); } #endif #if 0 /* image capture and download when GPIO pin 1 UP */ /* wait for GPIO pin 1 UP */ osEvent event = osMessageGet(queueSnapReqHandle, osWaitForever); if (event.status != osEventMessage) continue; printf("[CAM] frame capture requested (%lu)\r\n", event.value.v); #endif /* * 2022. 8. 25. fix logical seq. error under V0706 protocol; stop -> read length -> read data -> resume * 2022. 8. 26. simply combine three functions; asked by kylee */ SC03MPD_ASSERT(imc_sc03mpd_capture(&ifx), "[CAM] FAILED capture", ERROR) /* * 2022. 11. 10. TEST for EPS-SBC-CAM */ imc_cam_power_off(); // error_count reset error_count = 0; /* DO SOMETHING */ #if 0 if (decodeMyImage((uint8_t*)IMG_RAM_ADDR, ilen, 0, 0, 0, NULL, 1) != DEC_ENON) goto ERROR; // osSemaphoreRelease(full); #else printf ("[SBC] wait %dms for DO SOMETHING\r\n", DELAY_DO_SOMETHING); osDelay(DELAY_DO_SOMETHING); #endif continue; ERROR: /* * 2022. 7. 20. failure --> UART stuck continuously; works only after HW reset * 2022. 8. 25. add USART3 init. and reset fn.; download or capture failure --> normal * 2022. 8. 25. after SC03MPD power off/on, works well after few failures * 2022. 11. 11. start of this while loop, CAM init is called * 2023. 10. 20. add error_count for handling successive errors */ error_count++; printf("[CAM] ERROR HANDLING; CAM OFF > %dms delay > CAM ON\r\n", DELAY_BEFORE_ERR_HANDLING); imc_cam_power_off(); // osSemaphoreRelease(empty); osDelay(DELAY_BEFORE_ERR_HANDLING); //imc_sbc_power_off(); // ERROR 3 times -> SBC reboot if (error_count >= CAM_ERROR_COUNT_MAX) { error_count = 0; printf("[CAM] %d ERRORs continue and SBC OFF\r\n", CAM_ERROR_COUNT_MAX); imc_sbc_power_off(); osDelay(DELAY_DO_SOMETHING); } continue; } #if 0 EXIT: osDelay(1000); osThreadTerminate(NULL); #endif /* USER CODE END taskSnapRunner */ } /* USER CODE BEGIN Header_taskAIRunner */ /** * @brief Function implementing the taskAI thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_taskAIRunner */ void taskAIRunner(void *argument) { /* USER CODE BEGIN taskAIRunner */ /* Infinite loop */ for(;;) { osDelay(DELAY_AFTER_WORK); } /* USER CODE END taskAIRunner */ } void taskImcTest(void *argument) { int i = 0; while(1) { for(int j=0; j<10000000; j++) { __asm(" nop"); } printf("i=%d\r\n", i++); imcREQUEST_CHECKPOINT(); } } void taskImcTest_2(void *argument) { int i = 0; while (1) { for (int j = 0; j < 5000000; j++) { __asm(" nop"); } printf("\tj=%d\r\n", i++); imcREQUEST_CHECKPOINT(); } } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM2 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM2) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */