main.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656
  1. /* USER CODE BEGIN Header */
  2. /**
  3. ******************************************************************************
  4. * @file : main.c
  5. * @brief : Main program body
  6. ******************************************************************************
  7. * @attention
  8. *
  9. * Copyright (c) 2023 STMicroelectronics.
  10. * All rights reserved.
  11. *
  12. * This software is licensed under terms that can be found in the LICENSE file
  13. * in the root directory of this software component.
  14. * If no LICENSE file comes with this software, it is provided AS-IS.
  15. *
  16. ******************************************************************************
  17. */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21. #include "cmsis_os.h"
  22. #include "usb_device.h"
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25. #include "ImC/imc_api.h"
  26. #include "ImC/imc_kernel.h"
  27. /* USER CODE END Includes */
  28. /* Private typedef -----------------------------------------------------------*/
  29. typedef StaticTask_t osStaticThreadDef_t;
  30. /* USER CODE BEGIN PTD */
  31. /* USER CODE END PTD */
  32. /* Private define ------------------------------------------------------------*/
  33. /* USER CODE BEGIN PD */
  34. #define FRAM_MEM_SIZE (0x100000) // 1 MiB = 2 * 512 * 1024 bytes
  35. #define MRAM_MEM_SIZE (0x800000) // 8 MiB = 2 * 4 * 1024 * 1024 bytes
  36. #define MEM_TYPE_MRAM (1)
  37. #define MEM_TYPE_FRAM (2)
  38. #define MEM_SIZE_HALF (3)
  39. #define MEM_SIZE_FULL (4)
  40. #define MEM_TEST_TYPE MEM_TYPE_MRAM
  41. #define MEM_TEST_SIZE MEM_SIZE_HALF
  42. #define MEM_TEST_ADDR (0x68000000U)
  43. #if !defined(MEM_TEST_TYPE)
  44. #error "Choose the memory type for test!"
  45. #endif
  46. #if !defined(MEM_TEST_SIZE)
  47. #error "Choose the memory size for test!"
  48. #endif
  49. #if (MEM_TEST_TYPE == MEM_TYPE_MRAM)
  50. #if (MEM_TEST_SIZE == MEM_SIZE_FULL)
  51. #define MEMORY_SIZE MRAM_MEM_SIZE
  52. #elif (MEM_TEST_SIZE == MEM_SIZE_HALF)
  53. #define MEMORY_SIZE (MRAM_MEM_SIZE / 2)
  54. #else
  55. #error "Invalid memory size"
  56. #endif
  57. #elif (MEM_TEST_TYPE == MEM_TYPE_FRAM)
  58. #if (MEM_TEST_SIZE == MEM_SIZE_FULL)
  59. #define MEMORY_SIZE FRAM_MEM_SIZE
  60. #elif (MEM_TEST_SIZE == MEM_SIZE_HALF)
  61. #define MEMORY_SIZE (FRAM_MEM_SIZE / 2)
  62. #else
  63. #error "Invalid memory size"
  64. #endif
  65. #else
  66. #error "Invalid memory type"
  67. #endif
  68. /* USER CODE END PD */
  69. /* Private macro -------------------------------------------------------------*/
  70. /* USER CODE BEGIN PM */
  71. /* USER CODE END PM */
  72. /* Private variables ---------------------------------------------------------*/
  73. ADC_HandleTypeDef hadc1;
  74. ADC_HandleTypeDef hadc2;
  75. FDCAN_HandleTypeDef hfdcan1;
  76. I2C_HandleTypeDef hi2c1;
  77. I2C_HandleTypeDef hi2c3;
  78. SPI_HandleTypeDef hspi1;
  79. SPI_HandleTypeDef hspi2;
  80. TIM_HandleTypeDef htim7;
  81. UART_HandleTypeDef huart4;
  82. UART_HandleTypeDef huart1;
  83. UART_HandleTypeDef huart2;
  84. UART_HandleTypeDef huart3;
  85. SRAM_HandleTypeDef hsram1;
  86. SRAM_HandleTypeDef hsram2;
  87. SRAM_HandleTypeDef hsram3;
  88. SRAM_HandleTypeDef hsram4;
  89. /* Definitions for taskEPS */
  90. // osThreadId_t taskEPSHandle;
  91. // uint32_t taskEPSBuffer[ imcSTACK_SIZE ];
  92. // osStaticThreadDef_t taskEPSControlBlock;
  93. // const osThreadAttr_t taskEPS_attributes = {
  94. // .name = "taskEPS",
  95. // .stack_mem = &taskEPSBuffer[0],
  96. // .stack_size = sizeof(taskEPSBuffer),
  97. // .cb_mem = &taskEPSControlBlock,
  98. // .cb_size = sizeof(taskEPSControlBlock),
  99. // .priority = (osPriority_t) osPriorityRealtime,
  100. // };
  101. /* Definitions for taskSnap */
  102. osThreadId_t taskSnapHandle;
  103. uint32_t taskSnapBuffer[ imcSTACK_SIZE ];
  104. osStaticThreadDef_t taskSnapControlBlock;
  105. const osThreadAttr_t taskSnap_attributes = {
  106. .name = "taskSnap",
  107. .stack_mem = &taskSnapBuffer[0],
  108. .stack_size = sizeof(taskSnapBuffer),
  109. .cb_mem = &taskSnapControlBlock,
  110. .cb_size = sizeof(taskSnapControlBlock),
  111. .priority = (osPriority_t) osPriorityRealtime,
  112. };
  113. /* Definitions for taskTest1 */
  114. osThreadId_t taskTest1Handle;
  115. uint32_t taskTest1Buffer[ imcSTACK_SIZE ];
  116. osStaticThreadDef_t taskTest1ControlBlock;
  117. const osThreadAttr_t taskTest1_attributes = {
  118. .name = "taskTest1",
  119. .stack_mem = &taskTest1Buffer[0],
  120. .stack_size = sizeof(taskTest1Buffer),
  121. .cb_mem = &taskTest1ControlBlock,
  122. .cb_size = sizeof(taskTest1ControlBlock),
  123. .priority = (osPriority_t) osPriorityRealtime,
  124. };
  125. /* Definitions for taskTest2 */
  126. osThreadId_t taskTest2Handle;
  127. uint32_t taskTest2Buffer[ imcSTACK_SIZE ];
  128. osStaticThreadDef_t taskTest2ControlBlock;
  129. const osThreadAttr_t taskTest2_attributes = {
  130. .name = "taskTest2",
  131. .stack_mem = &taskTest2Buffer[0],
  132. .stack_size = sizeof(taskTest2Buffer),
  133. .cb_mem = &taskTest2ControlBlock,
  134. .cb_size = sizeof(taskTest2ControlBlock),
  135. .priority = (osPriority_t) osPriorityRealtime,
  136. };
  137. /* Definitions for taskAI */
  138. // osThreadId_t taskAIHandle;
  139. // uint32_t taskAIBuffer[ 37968 ];
  140. // osStaticThreadDef_t taskAIControlBlock;
  141. // const osThreadAttr_t taskAI_attributes = {
  142. // .name = "taskAI",
  143. // .stack_mem = &taskAIBuffer[0],
  144. // .stack_size = sizeof(taskAIBuffer),
  145. // .cb_mem = &taskAIControlBlock,
  146. // .cb_size = sizeof(taskAIControlBlock),
  147. // .priority = (osPriority_t) osPriorityNormal,
  148. // };
  149. /* USER CODE BEGIN PV */
  150. /* USER CODE END PV */
  151. /* Private function prototypes -----------------------------------------------*/
  152. void SystemClock_Config(void);
  153. void PeriphCommonClock_Config(void);
  154. static void MX_GPIO_Init(void);
  155. static void MX_ADC1_Init(void);
  156. static void MX_FDCAN1_Init(void);
  157. static void MX_FMC_Init(void);
  158. static void MX_I2C1_Init(void);
  159. static void MX_I2C3_Init(void);
  160. static void MX_SPI1_Init(void);
  161. static void MX_SPI2_Init(void);
  162. static void MX_TIM7_Init(void);
  163. static void MX_UART4_Init(void);
  164. static void MX_USART1_UART_Init(void);
  165. static void MX_USART2_UART_Init(void);
  166. static void MX_USART3_UART_Init(void);
  167. static void MX_ICACHE_Init(void);
  168. static void MX_GTZC_Init(void);
  169. static void MX_ADC2_Init(void);
  170. void taskEPSRunner(void *argument);
  171. void taskSnapRunner(void *argument);
  172. void taskAIRunner(void *argument);
  173. void taskImcTest(void *argument);
  174. void taskImcTest_2(void *argument);
  175. /* USER CODE BEGIN PFP */
  176. /* USER CODE END PFP */
  177. /* Private user code ---------------------------------------------------------*/
  178. /* USER CODE BEGIN 0 */
  179. #ifdef __cplusplus
  180. extern "C" int _write(int32_t file, uint8_t *ptr, int32_t len) {
  181. #else
  182. int _write(int32_t file, uint8_t *ptr, int32_t len) {
  183. #endif
  184. if( HAL_UART_Transmit(&UART_HANDLER_SBC, ptr, len, len) == HAL_OK ) return len;
  185. else return 0;
  186. }
  187. void vApplicationStackOverflowHook(TaskHandle_t* pxTask , char* pcTaskName ) {
  188. __disable_irq();
  189. //todo: Indicate Overflow with LEDs
  190. printf("stack overflow at %s\r\n", pcTaskName);
  191. for(;;) ;
  192. }
  193. int32_t hal_uart_ifx_send(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len);
  194. int32_t hal_uart_ifx_recv(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len);
  195. int32_t hal_uart_ifx_send(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len)
  196. {
  197. return (HAL_UART_Transmit((UART_HandleTypeDef*)ifx->context, buf, len, 100) == HAL_OK)? len : -1;
  198. }
  199. int32_t hal_uart_ifx_recv(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len)
  200. {
  201. return (HAL_UARTEx_ReceiveToIdle((UART_HandleTypeDef*)ifx->context, buf, len, &len, 500) == HAL_OK)? len : -1;
  202. }
  203. /* USER CODE END 0 */
  204. /**
  205. * @brief The application entry point.
  206. * @retval int
  207. */
  208. int main(void)
  209. {
  210. /* USER CODE BEGIN 1 */
  211. /* USER CODE END 1 */
  212. /* MCU Configuration--------------------------------------------------------*/
  213. /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  214. HAL_Init();
  215. /* USER CODE BEGIN Init */
  216. /* USER CODE END Init */
  217. /* Configure the system clock */
  218. SystemClock_Config();
  219. /* Configure the peripherals common clocks */
  220. PeriphCommonClock_Config();
  221. /* GTZC initialisation */
  222. MX_GTZC_Init();
  223. /* USER CODE BEGIN SysInit */
  224. /* USER CODE END SysInit */
  225. /* Initialize all configured peripherals */
  226. MX_GPIO_Init();
  227. MX_ADC1_Init();
  228. MX_FDCAN1_Init();
  229. MX_FMC_Init();
  230. MX_I2C1_Init();
  231. MX_I2C3_Init();
  232. MX_SPI1_Init();
  233. MX_SPI2_Init();
  234. MX_TIM7_Init();
  235. MX_UART4_Init();
  236. MX_USART1_UART_Init();
  237. MX_USART2_UART_Init();
  238. MX_USART3_UART_Init();
  239. MX_ICACHE_Init();
  240. MX_USB_Device_Init();
  241. MX_ADC2_Init();
  242. /* USER CODE BEGIN 2 */
  243. #if (imcUSE_IMC_KERNEL == 1)
  244. imcInit();
  245. #endif
  246. printf("\r\n\r\n\r\n");
  247. printf("**************************\r\n");
  248. printf("** TEST APP INFORMATION **\r\n");
  249. printf(" - SBC M33 freeRTOS, truztzone, ADC test\r\n");
  250. printf(" - 2023.10.20. 10:00\r\n");
  251. printf("**************************\r\n");
  252. printf("\r\n\r\n\r\n");
  253. /* after SBC boot-up, sbc power gpio pin should be ON */
  254. imc_sbc_power_on(); // delay(param) should be 0ms
  255. /* USER CODE END 2 */
  256. /* Init scheduler */
  257. osKernelInitialize();
  258. /* USER CODE BEGIN RTOS_MUTEX */
  259. /* add mutexes, ... */
  260. /* USER CODE END RTOS_MUTEX */
  261. /* USER CODE BEGIN RTOS_SEMAPHORES */
  262. /* add semaphores, ... */
  263. /* USER CODE END RTOS_SEMAPHORES */
  264. /* USER CODE BEGIN RTOS_TIMERS */
  265. /* start timers, add new ones, ... */
  266. /* USER CODE END RTOS_TIMERS */
  267. /* USER CODE BEGIN RTOS_QUEUES */
  268. /* add queues, ... */
  269. /* USER CODE END RTOS_QUEUES */
  270. /* Create the thread(s) */
  271. /* creation of taskEPS */
  272. // taskEPSHandle = osThreadNew(taskEPSRunner, NULL, &taskEPS_attributes);
  273. /* creation of taskSnap */
  274. #if (imcUSE_IMC_KERNEL == 1)
  275. taskSnapHandle = imcOsThreadNew(taskSnapRunner, NULL, &taskSnap_attributes);
  276. taskTest1Handle = imcOsThreadNew(taskImcTest, NULL, &taskTest1_attributes);
  277. taskTest2Handle = imcOsThreadNew(taskImcTest_2, NULL, &taskTest2_attributes);
  278. #else
  279. // taskSnapHandle = osThreadNew(taskSnapRunner, NULL, &taskSnap_attributes);
  280. #endif
  281. /* creation of taskAI */
  282. // taskAIHandle = osThreadNew(taskAIRunner, NULL, &taskAI_attributes);
  283. /* USER CODE BEGIN RTOS_THREADS */
  284. /* add threads, ... */
  285. /* USER CODE END RTOS_THREADS */
  286. /* USER CODE BEGIN RTOS_EVENTS */
  287. /* add events, ... */
  288. /* USER CODE END RTOS_EVENTS */
  289. /* Start scheduler */
  290. osKernelStart();
  291. /* We should never get here as control is now taken by the scheduler */
  292. /* Infinite loop */
  293. /* USER CODE BEGIN WHILE */
  294. while (1)
  295. {
  296. /* USER CODE END WHILE */
  297. /* USER CODE BEGIN 3 */
  298. }
  299. /* USER CODE END 3 */
  300. }
  301. /**
  302. * @brief System Clock Configuration
  303. * @retval None
  304. */
  305. void SystemClock_Config(void)
  306. {
  307. RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  308. RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  309. /** Configure the main internal regulator output voltage
  310. */
  311. if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
  312. {
  313. Error_Handler();
  314. }
  315. /** Configure LSE Drive Capability
  316. */
  317. HAL_PWR_EnableBkUpAccess();
  318. __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
  319. /** Initializes the RCC Oscillators according to the specified parameters
  320. * in the RCC_OscInitTypeDef structure.
  321. */
  322. RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE|RCC_OSCILLATORTYPE_LSE
  323. |RCC_OSCILLATORTYPE_MSI;
  324. RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  325. RCC_OscInitStruct.LSEState = RCC_LSE_ON;
  326. RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  327. RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
  328. RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
  329. RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  330. RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  331. RCC_OscInitStruct.PLL.PLLM = 1;
  332. RCC_OscInitStruct.PLL.PLLN = 16;
  333. RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
  334. RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV4;
  335. RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV4;
  336. if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  337. {
  338. Error_Handler();
  339. }
  340. /** Initializes the CPU, AHB and APB buses clocks
  341. */
  342. RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
  343. |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  344. RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  345. RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2;
  346. RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  347. RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  348. if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  349. {
  350. Error_Handler();
  351. }
  352. /** Enable MSI Auto calibration
  353. */
  354. HAL_RCCEx_EnableMSIPLLMode();
  355. }
  356. /**
  357. * @brief Peripherals Common Clock Configuration
  358. * @retval None
  359. */
  360. void PeriphCommonClock_Config(void)
  361. {
  362. RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  363. /** Initializes the common periph clock
  364. */
  365. PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB|RCC_PERIPHCLK_ADC;
  366. PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;
  367. PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_PLLSAI1;
  368. PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSAI1SOURCE_MSI;
  369. PeriphClkInit.PLLSAI1.PLLSAI1M = 1;
  370. PeriphClkInit.PLLSAI1.PLLSAI1N = 24;
  371. PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;
  372. PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;
  373. PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;
  374. PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_48M2CLK|RCC_PLLSAI1_ADC1CLK;
  375. if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  376. {
  377. Error_Handler();
  378. }
  379. }
  380. /**
  381. * @brief ADC1 Initialization Function
  382. * @param None
  383. * @retval None
  384. */
  385. static void MX_ADC1_Init(void)
  386. {
  387. /* USER CODE BEGIN ADC1_Init 0 */
  388. /* USER CODE END ADC1_Init 0 */
  389. ADC_MultiModeTypeDef multimode = {0};
  390. ADC_ChannelConfTypeDef sConfig = {0};
  391. /* USER CODE BEGIN ADC1_Init 1 */
  392. /* USER CODE END ADC1_Init 1 */
  393. /** Common config
  394. */
  395. hadc1.Instance = ADC1;
  396. hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  397. hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  398. hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  399. hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  400. hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  401. hadc1.Init.LowPowerAutoWait = DISABLE;
  402. hadc1.Init.ContinuousConvMode = DISABLE;
  403. hadc1.Init.NbrOfConversion = 1;
  404. hadc1.Init.DiscontinuousConvMode = DISABLE;
  405. hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  406. hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  407. hadc1.Init.DMAContinuousRequests = DISABLE;
  408. hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  409. hadc1.Init.OversamplingMode = DISABLE;
  410. if (HAL_ADC_Init(&hadc1) != HAL_OK)
  411. {
  412. Error_Handler();
  413. }
  414. /** Configure the ADC multi-mode
  415. */
  416. multimode.Mode = ADC_MODE_INDEPENDENT;
  417. if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  418. {
  419. Error_Handler();
  420. }
  421. /** Configure Regular Channel
  422. */
  423. sConfig.Channel = ADC_CHANNEL_1;
  424. sConfig.Rank = ADC_REGULAR_RANK_1;
  425. sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
  426. sConfig.SingleDiff = ADC_SINGLE_ENDED;
  427. sConfig.OffsetNumber = ADC_OFFSET_NONE;
  428. sConfig.Offset = 0;
  429. if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  430. {
  431. Error_Handler();
  432. }
  433. /* USER CODE BEGIN ADC1_Init 2 */
  434. /* USER CODE END ADC1_Init 2 */
  435. }
  436. /**
  437. * @brief ADC2 Initialization Function
  438. * @param None
  439. * @retval None
  440. */
  441. static void MX_ADC2_Init(void)
  442. {
  443. /* USER CODE BEGIN ADC2_Init 0 */
  444. /* USER CODE END ADC2_Init 0 */
  445. ADC_ChannelConfTypeDef sConfig = {0};
  446. /* USER CODE BEGIN ADC2_Init 1 */
  447. /* USER CODE END ADC2_Init 1 */
  448. /** Common config
  449. */
  450. hadc2.Instance = ADC2;
  451. hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  452. hadc2.Init.Resolution = ADC_RESOLUTION_12B;
  453. hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  454. hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE;
  455. hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  456. hadc2.Init.LowPowerAutoWait = DISABLE;
  457. hadc2.Init.ContinuousConvMode = DISABLE;
  458. hadc2.Init.NbrOfConversion = 1;
  459. hadc2.Init.DiscontinuousConvMode = DISABLE;
  460. hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  461. hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  462. hadc2.Init.DMAContinuousRequests = DISABLE;
  463. hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  464. hadc2.Init.OversamplingMode = DISABLE;
  465. if (HAL_ADC_Init(&hadc2) != HAL_OK)
  466. {
  467. Error_Handler();
  468. }
  469. /** Configure Regular Channel
  470. */
  471. sConfig.Channel = ADC_CHANNEL_2;
  472. sConfig.Rank = ADC_REGULAR_RANK_1;
  473. sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
  474. sConfig.SingleDiff = ADC_SINGLE_ENDED;
  475. sConfig.OffsetNumber = ADC_OFFSET_NONE;
  476. sConfig.Offset = 0;
  477. if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
  478. {
  479. Error_Handler();
  480. }
  481. /* USER CODE BEGIN ADC2_Init 2 */
  482. /* USER CODE END ADC2_Init 2 */
  483. }
  484. /**
  485. * @brief FDCAN1 Initialization Function
  486. * @param None
  487. * @retval None
  488. */
  489. static void MX_FDCAN1_Init(void)
  490. {
  491. /* USER CODE BEGIN FDCAN1_Init 0 */
  492. /* USER CODE END FDCAN1_Init 0 */
  493. /* USER CODE BEGIN FDCAN1_Init 1 */
  494. /* USER CODE END FDCAN1_Init 1 */
  495. hfdcan1.Instance = FDCAN1;
  496. hfdcan1.Init.ClockDivider = FDCAN_CLOCK_DIV1;
  497. hfdcan1.Init.FrameFormat = FDCAN_FRAME_CLASSIC;
  498. hfdcan1.Init.Mode = FDCAN_MODE_NORMAL;
  499. hfdcan1.Init.AutoRetransmission = DISABLE;
  500. hfdcan1.Init.TransmitPause = DISABLE;
  501. hfdcan1.Init.ProtocolException = DISABLE;
  502. hfdcan1.Init.NominalPrescaler = 16;
  503. hfdcan1.Init.NominalSyncJumpWidth = 1;
  504. hfdcan1.Init.NominalTimeSeg1 = 2;
  505. hfdcan1.Init.NominalTimeSeg2 = 2;
  506. hfdcan1.Init.DataPrescaler = 1;
  507. hfdcan1.Init.DataSyncJumpWidth = 1;
  508. hfdcan1.Init.DataTimeSeg1 = 1;
  509. hfdcan1.Init.DataTimeSeg2 = 1;
  510. hfdcan1.Init.StdFiltersNbr = 0;
  511. hfdcan1.Init.ExtFiltersNbr = 0;
  512. hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
  513. if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK)
  514. {
  515. Error_Handler();
  516. }
  517. /* USER CODE BEGIN FDCAN1_Init 2 */
  518. /* USER CODE END FDCAN1_Init 2 */
  519. }
  520. /**
  521. * @brief GTZC Initialization Function
  522. * @param None
  523. * @retval None
  524. */
  525. static void MX_GTZC_Init(void)
  526. {
  527. /* USER CODE BEGIN GTZC_Init 0 */
  528. /* USER CODE END GTZC_Init 0 */
  529. /* USER CODE BEGIN GTZC_Init 1 */
  530. /* USER CODE END GTZC_Init 1 */
  531. /* USER CODE BEGIN GTZC_Init 2 */
  532. /* USER CODE END GTZC_Init 2 */
  533. }
  534. /**
  535. * @brief I2C1 Initialization Function
  536. * @param None
  537. * @retval None
  538. */
  539. static void MX_I2C1_Init(void)
  540. {
  541. /* USER CODE BEGIN I2C1_Init 0 */
  542. /* USER CODE END I2C1_Init 0 */
  543. /* USER CODE BEGIN I2C1_Init 1 */
  544. /* USER CODE END I2C1_Init 1 */
  545. hi2c1.Instance = I2C1;
  546. hi2c1.Init.Timing = 0x00707CBB;
  547. hi2c1.Init.OwnAddress1 = 0;
  548. hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  549. hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  550. hi2c1.Init.OwnAddress2 = 0;
  551. hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  552. hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  553. hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  554. if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  555. {
  556. Error_Handler();
  557. }
  558. /** Configure Analogue filter
  559. */
  560. if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  561. {
  562. Error_Handler();
  563. }
  564. /** Configure Digital filter
  565. */
  566. if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
  567. {
  568. Error_Handler();
  569. }
  570. /* USER CODE BEGIN I2C1_Init 2 */
  571. /* USER CODE END I2C1_Init 2 */
  572. }
  573. /**
  574. * @brief I2C3 Initialization Function
  575. * @param None
  576. * @retval None
  577. */
  578. static void MX_I2C3_Init(void)
  579. {
  580. /* USER CODE BEGIN I2C3_Init 0 */
  581. /* USER CODE END I2C3_Init 0 */
  582. /* USER CODE BEGIN I2C3_Init 1 */
  583. /* USER CODE END I2C3_Init 1 */
  584. hi2c3.Instance = I2C3;
  585. hi2c3.Init.Timing = 0x00707CBB;
  586. hi2c3.Init.OwnAddress1 = 0;
  587. hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  588. hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  589. hi2c3.Init.OwnAddress2 = 0;
  590. hi2c3.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  591. hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  592. hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  593. if (HAL_I2C_Init(&hi2c3) != HAL_OK)
  594. {
  595. Error_Handler();
  596. }
  597. /** Configure Analogue filter
  598. */
  599. if (HAL_I2CEx_ConfigAnalogFilter(&hi2c3, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  600. {
  601. Error_Handler();
  602. }
  603. /** Configure Digital filter
  604. */
  605. if (HAL_I2CEx_ConfigDigitalFilter(&hi2c3, 0) != HAL_OK)
  606. {
  607. Error_Handler();
  608. }
  609. /* USER CODE BEGIN I2C3_Init 2 */
  610. /* USER CODE END I2C3_Init 2 */
  611. }
  612. /**
  613. * @brief ICACHE Initialization Function
  614. * @param None
  615. * @retval None
  616. */
  617. static void MX_ICACHE_Init(void)
  618. {
  619. /* USER CODE BEGIN ICACHE_Init 0 */
  620. /* USER CODE END ICACHE_Init 0 */
  621. /* USER CODE BEGIN ICACHE_Init 1 */
  622. /* USER CODE END ICACHE_Init 1 */
  623. /** Enable instruction cache in 1-way (direct mapped cache)
  624. */
  625. if (HAL_ICACHE_ConfigAssociativityMode(ICACHE_1WAY) != HAL_OK)
  626. {
  627. Error_Handler();
  628. }
  629. if (HAL_ICACHE_Enable() != HAL_OK)
  630. {
  631. Error_Handler();
  632. }
  633. /* USER CODE BEGIN ICACHE_Init 2 */
  634. /* USER CODE END ICACHE_Init 2 */
  635. }
  636. /**
  637. * @brief SPI1 Initialization Function
  638. * @param None
  639. * @retval None
  640. */
  641. static void MX_SPI1_Init(void)
  642. {
  643. /* USER CODE BEGIN SPI1_Init 0 */
  644. /* USER CODE END SPI1_Init 0 */
  645. /* USER CODE BEGIN SPI1_Init 1 */
  646. /* USER CODE END SPI1_Init 1 */
  647. /* SPI1 parameter configuration*/
  648. hspi1.Instance = SPI1;
  649. hspi1.Init.Mode = SPI_MODE_MASTER;
  650. hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  651. hspi1.Init.DataSize = SPI_DATASIZE_4BIT;
  652. hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  653. hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  654. hspi1.Init.NSS = SPI_NSS_HARD_OUTPUT;
  655. hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  656. hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  657. hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  658. hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  659. hspi1.Init.CRCPolynomial = 7;
  660. hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
  661. hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
  662. if (HAL_SPI_Init(&hspi1) != HAL_OK)
  663. {
  664. Error_Handler();
  665. }
  666. /* USER CODE BEGIN SPI1_Init 2 */
  667. /* USER CODE END SPI1_Init 2 */
  668. }
  669. /**
  670. * @brief SPI2 Initialization Function
  671. * @param None
  672. * @retval None
  673. */
  674. static void MX_SPI2_Init(void)
  675. {
  676. /* USER CODE BEGIN SPI2_Init 0 */
  677. /* USER CODE END SPI2_Init 0 */
  678. /* USER CODE BEGIN SPI2_Init 1 */
  679. /* USER CODE END SPI2_Init 1 */
  680. /* SPI2 parameter configuration*/
  681. hspi2.Instance = SPI2;
  682. hspi2.Init.Mode = SPI_MODE_MASTER;
  683. hspi2.Init.Direction = SPI_DIRECTION_2LINES;
  684. hspi2.Init.DataSize = SPI_DATASIZE_4BIT;
  685. hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
  686. hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
  687. hspi2.Init.NSS = SPI_NSS_HARD_OUTPUT;
  688. hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  689. hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
  690. hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
  691. hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  692. hspi2.Init.CRCPolynomial = 7;
  693. hspi2.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
  694. hspi2.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
  695. if (HAL_SPI_Init(&hspi2) != HAL_OK)
  696. {
  697. Error_Handler();
  698. }
  699. /* USER CODE BEGIN SPI2_Init 2 */
  700. /* USER CODE END SPI2_Init 2 */
  701. }
  702. /**
  703. * @brief TIM7 Initialization Function
  704. * @param None
  705. * @retval None
  706. */
  707. static void MX_TIM7_Init(void)
  708. {
  709. /* USER CODE BEGIN TIM7_Init 0 */
  710. /* USER CODE END TIM7_Init 0 */
  711. TIM_MasterConfigTypeDef sMasterConfig = {0};
  712. /* USER CODE BEGIN TIM7_Init 1 */
  713. /* USER CODE END TIM7_Init 1 */
  714. htim7.Instance = TIM7;
  715. htim7.Init.Prescaler = 0;
  716. htim7.Init.CounterMode = TIM_COUNTERMODE_UP;
  717. htim7.Init.Period = 65535;
  718. htim7.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  719. if (HAL_TIM_Base_Init(&htim7) != HAL_OK)
  720. {
  721. Error_Handler();
  722. }
  723. sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  724. sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  725. if (HAL_TIMEx_MasterConfigSynchronization(&htim7, &sMasterConfig) != HAL_OK)
  726. {
  727. Error_Handler();
  728. }
  729. /* USER CODE BEGIN TIM7_Init 2 */
  730. /* USER CODE END TIM7_Init 2 */
  731. }
  732. /**
  733. * @brief UART4 Initialization Function
  734. * @param None
  735. * @retval None
  736. */
  737. static void MX_UART4_Init(void)
  738. {
  739. /* USER CODE BEGIN UART4_Init 0 */
  740. /* USER CODE END UART4_Init 0 */
  741. /* USER CODE BEGIN UART4_Init 1 */
  742. /* USER CODE END UART4_Init 1 */
  743. huart4.Instance = UART4;
  744. huart4.Init.BaudRate = 115200;
  745. huart4.Init.WordLength = UART_WORDLENGTH_8B;
  746. huart4.Init.StopBits = UART_STOPBITS_1;
  747. huart4.Init.Parity = UART_PARITY_NONE;
  748. huart4.Init.Mode = UART_MODE_TX_RX;
  749. huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  750. huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  751. huart4.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  752. huart4.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  753. huart4.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  754. if (HAL_UART_Init(&huart4) != HAL_OK)
  755. {
  756. Error_Handler();
  757. }
  758. if (HAL_UARTEx_SetTxFifoThreshold(&huart4, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  759. {
  760. Error_Handler();
  761. }
  762. if (HAL_UARTEx_SetRxFifoThreshold(&huart4, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  763. {
  764. Error_Handler();
  765. }
  766. if (HAL_UARTEx_DisableFifoMode(&huart4) != HAL_OK)
  767. {
  768. Error_Handler();
  769. }
  770. /* USER CODE BEGIN UART4_Init 2 */
  771. /* USER CODE END UART4_Init 2 */
  772. }
  773. /**
  774. * @brief USART1 Initialization Function
  775. * @param None
  776. * @retval None
  777. */
  778. static void MX_USART1_UART_Init(void)
  779. {
  780. /* USER CODE BEGIN USART1_Init 0 */
  781. /* USER CODE END USART1_Init 0 */
  782. /* USER CODE BEGIN USART1_Init 1 */
  783. /* USER CODE END USART1_Init 1 */
  784. huart1.Instance = USART1;
  785. huart1.Init.BaudRate = 115200;
  786. huart1.Init.WordLength = UART_WORDLENGTH_8B;
  787. huart1.Init.StopBits = UART_STOPBITS_1;
  788. huart1.Init.Parity = UART_PARITY_NONE;
  789. huart1.Init.Mode = UART_MODE_TX_RX;
  790. huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  791. huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  792. huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  793. huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  794. huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  795. if (HAL_UART_Init(&huart1) != HAL_OK)
  796. {
  797. Error_Handler();
  798. }
  799. if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  800. {
  801. Error_Handler();
  802. }
  803. if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  804. {
  805. Error_Handler();
  806. }
  807. if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
  808. {
  809. Error_Handler();
  810. }
  811. /* USER CODE BEGIN USART1_Init 2 */
  812. /* USER CODE END USART1_Init 2 */
  813. }
  814. /**
  815. * @brief USART2 Initialization Function
  816. * @param None
  817. * @retval None
  818. */
  819. static void MX_USART2_UART_Init(void)
  820. {
  821. /* USER CODE BEGIN USART2_Init 0 */
  822. /* USER CODE END USART2_Init 0 */
  823. /* USER CODE BEGIN USART2_Init 1 */
  824. /* USER CODE END USART2_Init 1 */
  825. huart2.Instance = USART2;
  826. huart2.Init.BaudRate = 115200;
  827. huart2.Init.WordLength = UART_WORDLENGTH_8B;
  828. huart2.Init.StopBits = UART_STOPBITS_1;
  829. huart2.Init.Parity = UART_PARITY_NONE;
  830. huart2.Init.Mode = UART_MODE_TX_RX;
  831. huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  832. huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  833. huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  834. huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  835. huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  836. if (HAL_UART_Init(&huart2) != HAL_OK)
  837. {
  838. Error_Handler();
  839. }
  840. if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  841. {
  842. Error_Handler();
  843. }
  844. if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  845. {
  846. Error_Handler();
  847. }
  848. if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK)
  849. {
  850. Error_Handler();
  851. }
  852. /* USER CODE BEGIN USART2_Init 2 */
  853. /* USER CODE END USART2_Init 2 */
  854. }
  855. /**
  856. * @brief USART3 Initialization Function
  857. * @param None
  858. * @retval None
  859. */
  860. static void MX_USART3_UART_Init(void)
  861. {
  862. /* USER CODE BEGIN USART3_Init 0 */
  863. /* USER CODE END USART3_Init 0 */
  864. /* USER CODE BEGIN USART3_Init 1 */
  865. /*
  866. * use below code if code is re-generated by .ioc modification
  867. #if CAM_CHANGE_BAUDRATE
  868. UART_HANDLER_CAM.Init.BaudRate = 38400;
  869. #else
  870. UART_HANDLER_CAM.Init.BaudRate = 115200;
  871. #endif
  872. */
  873. /* USER CODE END USART3_Init 1 */
  874. huart3.Instance = USART3;
  875. huart3.Init.BaudRate = 115200;
  876. huart3.Init.WordLength = UART_WORDLENGTH_8B;
  877. huart3.Init.StopBits = UART_STOPBITS_1;
  878. huart3.Init.Parity = UART_PARITY_NONE;
  879. huart3.Init.Mode = UART_MODE_TX_RX;
  880. huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  881. huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  882. huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  883. huart3.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  884. huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  885. if (HAL_UART_Init(&huart3) != HAL_OK)
  886. {
  887. Error_Handler();
  888. }
  889. if (HAL_UARTEx_SetTxFifoThreshold(&huart3, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  890. {
  891. Error_Handler();
  892. }
  893. if (HAL_UARTEx_SetRxFifoThreshold(&huart3, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  894. {
  895. Error_Handler();
  896. }
  897. if (HAL_UARTEx_DisableFifoMode(&huart3) != HAL_OK)
  898. {
  899. Error_Handler();
  900. }
  901. /* USER CODE BEGIN USART3_Init 2 */
  902. /* USER CODE END USART3_Init 2 */
  903. }
  904. /* FMC initialization function */
  905. static void MX_FMC_Init(void)
  906. {
  907. /* USER CODE BEGIN FMC_Init 0 */
  908. /* USER CODE END FMC_Init 0 */
  909. FMC_NORSRAM_TimingTypeDef Timing = {0};
  910. /* USER CODE BEGIN FMC_Init 1 */
  911. /* USER CODE END FMC_Init 1 */
  912. /** Perform the SRAM1 memory initialization sequence
  913. */
  914. hsram1.Instance = FMC_NORSRAM_DEVICE;
  915. hsram1.Extended = FMC_NORSRAM_EXTENDED_DEVICE;
  916. /* hsram1.Init */
  917. hsram1.Init.NSBank = FMC_NORSRAM_BANK1;
  918. hsram1.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE;
  919. hsram1.Init.MemoryType = FMC_MEMORY_TYPE_SRAM;
  920. hsram1.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16;
  921. hsram1.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE;
  922. hsram1.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW;
  923. hsram1.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;
  924. hsram1.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE;
  925. hsram1.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;
  926. hsram1.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;
  927. hsram1.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE;
  928. hsram1.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;
  929. hsram1.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY;
  930. hsram1.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE;
  931. hsram1.Init.NBLSetupTime = 0;
  932. hsram1.Init.PageSize = FMC_PAGE_SIZE_NONE;
  933. hsram1.Init.MaxChipSelectPulse = DISABLE;
  934. /* Timing */
  935. Timing.AddressSetupTime = 15;
  936. Timing.AddressHoldTime = 15;
  937. Timing.DataSetupTime = 30;
  938. Timing.DataHoldTime = 0;
  939. Timing.BusTurnAroundDuration = 2;
  940. Timing.CLKDivision = 16;
  941. Timing.DataLatency = 17;
  942. Timing.AccessMode = FMC_ACCESS_MODE_A;
  943. /* ExtTiming */
  944. if (HAL_SRAM_Init(&hsram1, &Timing, NULL) != HAL_OK)
  945. {
  946. Error_Handler( );
  947. }
  948. /** Perform the SRAM2 memory initialization sequence
  949. */
  950. hsram2.Instance = FMC_NORSRAM_DEVICE;
  951. hsram2.Extended = FMC_NORSRAM_EXTENDED_DEVICE;
  952. /* hsram2.Init */
  953. hsram2.Init.NSBank = FMC_NORSRAM_BANK2;
  954. hsram2.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE;
  955. hsram2.Init.MemoryType = FMC_MEMORY_TYPE_SRAM;
  956. hsram2.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16;
  957. hsram2.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE;
  958. hsram2.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW;
  959. hsram2.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;
  960. hsram2.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE;
  961. hsram2.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;
  962. hsram2.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;
  963. hsram2.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE;
  964. hsram2.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;
  965. hsram2.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY;
  966. hsram2.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE;
  967. hsram2.Init.NBLSetupTime = 0;
  968. hsram2.Init.PageSize = FMC_PAGE_SIZE_NONE;
  969. hsram2.Init.MaxChipSelectPulse = DISABLE;
  970. /* Timing */
  971. Timing.AddressSetupTime = 15;
  972. Timing.AddressHoldTime = 15;
  973. Timing.DataSetupTime = 30;
  974. Timing.DataHoldTime = 0;
  975. Timing.BusTurnAroundDuration = 2;
  976. Timing.CLKDivision = 16;
  977. Timing.DataLatency = 17;
  978. Timing.AccessMode = FMC_ACCESS_MODE_A;
  979. /* ExtTiming */
  980. if (HAL_SRAM_Init(&hsram2, &Timing, NULL) != HAL_OK)
  981. {
  982. Error_Handler( );
  983. }
  984. /** Perform the SRAM3 memory initialization sequence
  985. */
  986. hsram3.Instance = FMC_NORSRAM_DEVICE;
  987. hsram3.Extended = FMC_NORSRAM_EXTENDED_DEVICE;
  988. /* hsram3.Init */
  989. hsram3.Init.NSBank = FMC_NORSRAM_BANK3;
  990. hsram3.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE;
  991. hsram3.Init.MemoryType = FMC_MEMORY_TYPE_PSRAM;
  992. hsram3.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16;
  993. hsram3.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE;
  994. hsram3.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW;
  995. hsram3.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;
  996. hsram3.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE;
  997. hsram3.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;
  998. hsram3.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;
  999. hsram3.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE;
  1000. hsram3.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;
  1001. hsram3.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY;
  1002. hsram3.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE;
  1003. hsram3.Init.NBLSetupTime = 0;
  1004. hsram3.Init.PageSize = FMC_PAGE_SIZE_NONE;
  1005. hsram3.Init.MaxChipSelectPulse = DISABLE;
  1006. /* Timing */
  1007. Timing.AddressSetupTime = 15;
  1008. Timing.AddressHoldTime = 15;
  1009. Timing.DataSetupTime = 30;
  1010. Timing.DataHoldTime = 0;
  1011. Timing.BusTurnAroundDuration = 2;
  1012. Timing.CLKDivision = 16;
  1013. Timing.DataLatency = 17;
  1014. Timing.AccessMode = FMC_ACCESS_MODE_A;
  1015. /* ExtTiming */
  1016. if (HAL_SRAM_Init(&hsram3, &Timing, NULL) != HAL_OK)
  1017. {
  1018. Error_Handler( );
  1019. }
  1020. /** Perform the SRAM4 memory initialization sequence
  1021. */
  1022. hsram4.Instance = FMC_NORSRAM_DEVICE;
  1023. hsram4.Extended = FMC_NORSRAM_EXTENDED_DEVICE;
  1024. /* hsram4.Init */
  1025. hsram4.Init.NSBank = FMC_NORSRAM_BANK4;
  1026. hsram4.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE;
  1027. hsram4.Init.MemoryType = FMC_MEMORY_TYPE_SRAM;
  1028. hsram4.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16;
  1029. hsram4.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE;
  1030. hsram4.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW;
  1031. hsram4.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;
  1032. hsram4.Init.WriteOperation = FMC_WRITE_OPERATION_DISABLE;
  1033. hsram4.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;
  1034. hsram4.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;
  1035. hsram4.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE;
  1036. hsram4.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;
  1037. hsram4.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY;
  1038. hsram4.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE;
  1039. hsram4.Init.NBLSetupTime = 0;
  1040. hsram4.Init.PageSize = FMC_PAGE_SIZE_NONE;
  1041. hsram4.Init.MaxChipSelectPulse = DISABLE;
  1042. /* Timing */
  1043. Timing.AddressSetupTime = 15;
  1044. Timing.AddressHoldTime = 15;
  1045. Timing.DataSetupTime = 255;
  1046. Timing.DataHoldTime = 0;
  1047. Timing.BusTurnAroundDuration = 15;
  1048. Timing.CLKDivision = 16;
  1049. Timing.DataLatency = 17;
  1050. Timing.AccessMode = FMC_ACCESS_MODE_A;
  1051. /* ExtTiming */
  1052. if (HAL_SRAM_Init(&hsram4, &Timing, NULL) != HAL_OK)
  1053. {
  1054. Error_Handler( );
  1055. }
  1056. /* USER CODE BEGIN FMC_Init 2 */
  1057. /* USER CODE END FMC_Init 2 */
  1058. }
  1059. /**
  1060. * @brief GPIO Initialization Function
  1061. * @param None
  1062. * @retval None
  1063. */
  1064. static void MX_GPIO_Init(void)
  1065. {
  1066. GPIO_InitTypeDef GPIO_InitStruct = {0};
  1067. /* USER CODE BEGIN MX_GPIO_Init_1 */
  1068. /* USER CODE END MX_GPIO_Init_1 */
  1069. /* GPIO Ports Clock Enable */
  1070. __HAL_RCC_GPIOE_CLK_ENABLE();
  1071. __HAL_RCC_GPIOC_CLK_ENABLE();
  1072. __HAL_RCC_GPIOF_CLK_ENABLE();
  1073. __HAL_RCC_GPIOH_CLK_ENABLE();
  1074. __HAL_RCC_GPIOA_CLK_ENABLE();
  1075. __HAL_RCC_GPIOB_CLK_ENABLE();
  1076. __HAL_RCC_GPIOG_CLK_ENABLE();
  1077. __HAL_RCC_GPIOD_CLK_ENABLE();
  1078. HAL_PWREx_EnableVddIO2();
  1079. /*Configure GPIO pin Output Level */
  1080. HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET);
  1081. /*Configure GPIO pin Output Level */
  1082. HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_11, GPIO_PIN_RESET);
  1083. /*Configure GPIO pin Output Level */
  1084. HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_RESET);
  1085. /*Configure GPIO pin Output Level */
  1086. HAL_GPIO_WritePin(GPIOG, GPIO_PIN_6|GPIO_PIN_11|GPIO_PIN_15, GPIO_PIN_RESET);
  1087. /*Configure GPIO pin Output Level */
  1088. HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
  1089. /*Configure GPIO pin Output Level */
  1090. HAL_GPIO_WritePin(GPIOD, GPIO_PIN_3, GPIO_PIN_RESET);
  1091. /*Configure GPIO pins : PC13 PC6 */
  1092. GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_6;
  1093. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1094. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1095. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1096. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  1097. /*Configure GPIO pins : PF6 PF7 PF11 */
  1098. GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_11;
  1099. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1100. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1101. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1102. HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
  1103. /*Configure GPIO pins : PF8 PF9 PF10 */
  1104. GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10;
  1105. GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  1106. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1107. HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
  1108. /*Configure GPIO pin : PB2 */
  1109. GPIO_InitStruct.Pin = GPIO_PIN_2;
  1110. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1111. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1112. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1113. HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  1114. /*Configure GPIO pins : PG6 PG15 */
  1115. GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_15;
  1116. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1117. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1118. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1119. HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
  1120. /*Configure GPIO pin : PC7 */
  1121. GPIO_InitStruct.Pin = GPIO_PIN_7;
  1122. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1123. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1124. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  1125. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  1126. /*Configure GPIO pin : PA8 */
  1127. GPIO_InitStruct.Pin = GPIO_PIN_8;
  1128. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1129. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1130. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1131. HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  1132. /*Configure GPIO pin : PD2 */
  1133. GPIO_InitStruct.Pin = GPIO_PIN_2;
  1134. GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  1135. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1136. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  1137. GPIO_InitStruct.Alternate = GPIO_AF12_SDMMC1;
  1138. HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
  1139. /*Configure GPIO pin : PD3 */
  1140. GPIO_InitStruct.Pin = GPIO_PIN_3;
  1141. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1142. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1143. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1144. HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
  1145. /*Configure GPIO pin : PG11 */
  1146. GPIO_InitStruct.Pin = GPIO_PIN_11;
  1147. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1148. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1149. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  1150. HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
  1151. /* USER CODE BEGIN MX_GPIO_Init_2 */
  1152. /* USER CODE END MX_GPIO_Init_2 */
  1153. }
  1154. /* USER CODE BEGIN 4 */
  1155. /* USER CODE END 4 */
  1156. /* USER CODE BEGIN Header_taskEPSRunner */
  1157. /**
  1158. * @brief Function implementing the taskEPS thread.
  1159. * @param argument: Not used
  1160. * @retval None
  1161. */
  1162. /* USER CODE END Header_taskEPSRunner */
  1163. void taskEPSRunner(void *argument)
  1164. {
  1165. /* USER CODE BEGIN 5 */
  1166. #if (EPS_CAP_VOLT_ADC)
  1167. int capacitor_voltage0 = 0;
  1168. //int capacitor_voltage1 = 0;
  1169. /* Infinite loop */
  1170. for(;;)
  1171. {
  1172. capacitor_voltage0 = measure_voltage(ADC_HANDLER_SBC, EPS_CAP_ID_SBC);
  1173. //capacitor_voltage1 = measure_voltage(ADC_HANDLER_CAM, EPS_CAP_ID_CAM);
  1174. //printf("\t\t\t\t\t\t[EPS] CAP VOLT: %d.%03d, %d.%03d\r\n", capacitor_voltage0/1000, capacitor_voltage0%1000, capacitor_voltage1/1000, capacitor_voltage1%1000);
  1175. if (capacitor_voltage0 < EPS_CAP_VOLT_LOW_THRESHOLD_SBC)
  1176. {
  1177. printf("[EPS] CAP#%d < %dmV (TODO JIT CHECKPOINT)\r\n", EPS_CAP_ID_SBC, EPS_CAP_VOLT_LOW_THRESHOLD_SBC);
  1178. // TODO: JIT CHECKPOINT
  1179. imc_sbc_power_off();
  1180. }
  1181. osDelay(DELAY_AFTER_WORK);
  1182. }
  1183. #endif
  1184. #if (EPS_CAP_VOLT_GPIO)
  1185. /* energy_level: 1~7, and SBC power off when the level is 1 */
  1186. uint8_t energy_level_prev = 8;
  1187. uint8_t energy_level_curr = 8;
  1188. /* Infinite loop */
  1189. for(;;)
  1190. {
  1191. energy_level_curr = imc_get_energy_level();
  1192. if (energy_level_curr != energy_level_prev)
  1193. {
  1194. printf("[EPS] E Level: %d\r\n",
  1195. energy_level_curr);
  1196. if (energy_level_curr <= EPS_SBC_OFF_LEVEL)
  1197. {
  1198. imc_sbc_power_off();
  1199. }
  1200. energy_level_prev = energy_level_curr;
  1201. }
  1202. osDelay(DELAY_AFTER_WORK);
  1203. }
  1204. #endif
  1205. /* USER CODE END 5 */
  1206. }
  1207. /* USER CODE BEGIN Header_taskSnapRunner */
  1208. /**
  1209. * @brief Function implementing the taskSnap thread.
  1210. * @param argument: Not used
  1211. * @retval None
  1212. */
  1213. extern uint16_t ilen;
  1214. /* USER CODE END Header_taskSnapRunner */
  1215. void taskSnapRunner(void *argument)
  1216. {
  1217. /* USER CODE BEGIN taskSnapRunner */
  1218. uint32_t trial = 1;
  1219. sc03mpd_ifx_t ifx = {
  1220. .context = (void*)&UART_HANDLER_CAM,
  1221. .sendif = hal_uart_ifx_send,
  1222. .recvif = hal_uart_ifx_recv,
  1223. };
  1224. uint8_t error_count = 0;
  1225. /* Infinite loop */
  1226. while (1)
  1227. {
  1228. printf ("\r\n\r\n\r\n#%ld\r\n\r\n", trial);
  1229. trial++;
  1230. // osSemaphoreWait(empty, osWaitForever);
  1231. #if EPS_CAP_VOLT_ADC
  1232. SC03MPD_ASSERT(imc_sc03mpd_cap_check (ADC_HANDLER_CAM), "[CAM] FAILED CAP volt", ERROR)
  1233. #endif
  1234. /*
  1235. * 2022. 11. 10. TEST for EPS-SBC-CAM; SBC controls CAM ON/OFF; KETI EPS does NOT wait 2.5s for CAM init.
  1236. */
  1237. imc_cam_power_on();
  1238. // (M33) moved from imc_sc03mpd_init
  1239. printf("[CAM] wait %dms for boot-up\r\n", DELAY_AFTER_POWERUP);
  1240. osDelay (DELAY_AFTER_POWERUP);
  1241. MX_USART3_UART_Init();
  1242. // (M33) moved from imc_sc03mpd_init
  1243. SC03MPD_ASSERT(imc_sc03mpd_init(&ifx), "[CAM] FAILED init", ERROR)
  1244. /* execute once when change CAM default baudrate */
  1245. #if CAM_CHANGE_BAUDRATE
  1246. sc03mpd_set_baud(&ifx, SC03MPD_BDR_115200, 1); // default: SC03MPD_BDR_38400
  1247. printf ("[CAM] OK change default baudrate");
  1248. while (1)
  1249. {
  1250. osDelay(1);
  1251. }
  1252. #endif
  1253. #if 0
  1254. /* image capture and download when GPIO pin 1 UP */
  1255. /* wait for GPIO pin 1 UP */
  1256. osEvent event = osMessageGet(queueSnapReqHandle, osWaitForever);
  1257. if (event.status != osEventMessage)
  1258. continue;
  1259. printf("[CAM] frame capture requested (%lu)\r\n", event.value.v);
  1260. #endif
  1261. /*
  1262. * 2022. 8. 25. fix logical seq. error under V0706 protocol; stop -> read length -> read data -> resume
  1263. * 2022. 8. 26. simply combine three functions; asked by kylee
  1264. */
  1265. SC03MPD_ASSERT(imc_sc03mpd_capture(&ifx), "[CAM] FAILED capture", ERROR)
  1266. /*
  1267. * 2022. 11. 10. TEST for EPS-SBC-CAM
  1268. */
  1269. imc_cam_power_off();
  1270. imcREQUEST_CHECKPOINT();
  1271. // error_count reset
  1272. error_count = 0;
  1273. /* DO SOMETHING */
  1274. #if 0
  1275. if (decodeMyImage((uint8_t*)IMG_RAM_ADDR, ilen, 0, 0, 0, NULL, 1) != DEC_ENON)
  1276. goto ERROR;
  1277. // osSemaphoreRelease(full);
  1278. #else
  1279. printf ("[SBC] wait %dms for DO SOMETHING\r\n", DELAY_DO_SOMETHING);
  1280. osDelay(DELAY_DO_SOMETHING);
  1281. #endif
  1282. continue;
  1283. ERROR:
  1284. /*
  1285. * 2022. 7. 20. failure --> UART stuck continuously; works only after HW reset
  1286. * 2022. 8. 25. add USART3 init. and reset fn.; download or capture failure --> normal
  1287. * 2022. 8. 25. after SC03MPD power off/on, works well after few failures
  1288. * 2022. 11. 11. start of this while loop, CAM init is called
  1289. * 2023. 10. 20. add error_count for handling successive errors
  1290. */
  1291. error_count++;
  1292. printf("[CAM] ERROR HANDLING; CAM OFF > %dms delay > CAM ON\r\n", DELAY_BEFORE_ERR_HANDLING);
  1293. imc_cam_power_off();
  1294. // osSemaphoreRelease(empty);
  1295. osDelay(DELAY_BEFORE_ERR_HANDLING); //imc_sbc_power_off();
  1296. // ERROR 3 times -> SBC reboot
  1297. if (error_count >= CAM_ERROR_COUNT_MAX) {
  1298. error_count = 0;
  1299. printf("[CAM] %d ERRORs continue and SBC OFF\r\n", CAM_ERROR_COUNT_MAX);
  1300. imc_sbc_power_off();
  1301. osDelay(DELAY_DO_SOMETHING);
  1302. }
  1303. continue;
  1304. }
  1305. #if 0
  1306. EXIT:
  1307. osDelay(1000);
  1308. osThreadTerminate(NULL);
  1309. #endif
  1310. /* USER CODE END taskSnapRunner */
  1311. }
  1312. /* USER CODE BEGIN Header_taskAIRunner */
  1313. /**
  1314. * @brief Function implementing the taskAI thread.
  1315. * @param argument: Not used
  1316. * @retval None
  1317. */
  1318. /* USER CODE END Header_taskAIRunner */
  1319. void taskAIRunner(void *argument)
  1320. {
  1321. /* USER CODE BEGIN taskAIRunner */
  1322. /* Infinite loop */
  1323. for(;;)
  1324. {
  1325. osDelay(DELAY_AFTER_WORK);
  1326. }
  1327. /* USER CODE END taskAIRunner */
  1328. }
  1329. void taskImcTest(void *argument) {
  1330. int i = 0;
  1331. while(1) {
  1332. osDelay(1000);
  1333. printf("i=%d\r\n", i++);
  1334. imcREQUEST_CHECKPOINT();
  1335. }
  1336. }
  1337. void taskImcTest_2(void *argument)
  1338. {
  1339. int i = 0;
  1340. while (1)
  1341. {
  1342. osDelay(2000);
  1343. printf("\tj=%d\r\n", i++);
  1344. // imcREQUEST_CHECKPOINT();
  1345. }
  1346. }
  1347. /**
  1348. * @brief Period elapsed callback in non blocking mode
  1349. * @note This function is called when TIM2 interrupt took place, inside
  1350. * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  1351. * a global variable "uwTick" used as application time base.
  1352. * @param htim : TIM handle
  1353. * @retval None
  1354. */
  1355. void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
  1356. {
  1357. /* USER CODE BEGIN Callback 0 */
  1358. /* USER CODE END Callback 0 */
  1359. if (htim->Instance == TIM2) {
  1360. HAL_IncTick();
  1361. }
  1362. /* USER CODE BEGIN Callback 1 */
  1363. /* USER CODE END Callback 1 */
  1364. }
  1365. /**
  1366. * @brief This function is executed in case of error occurrence.
  1367. * @retval None
  1368. */
  1369. void Error_Handler(void)
  1370. {
  1371. /* USER CODE BEGIN Error_Handler_Debug */
  1372. /* User can add his own implementation to report the HAL error return state */
  1373. __disable_irq();
  1374. while (1)
  1375. {
  1376. }
  1377. /* USER CODE END Error_Handler_Debug */
  1378. }
  1379. #ifdef USE_FULL_ASSERT
  1380. /**
  1381. * @brief Reports the name of the source file and the source line number
  1382. * where the assert_param error has occurred.
  1383. * @param file: pointer to the source file name
  1384. * @param line: assert_param error line source number
  1385. * @retval None
  1386. */
  1387. void assert_failed(uint8_t *file, uint32_t line)
  1388. {
  1389. /* USER CODE BEGIN 6 */
  1390. /* User can add his own implementation to report the file name and line number,
  1391. ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  1392. /* USER CODE END 6 */
  1393. }
  1394. #endif /* USE_FULL_ASSERT */