main.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580
  1. /* USER CODE BEGIN Header */
  2. /**
  3. ******************************************************************************
  4. * @file : main.c
  5. * @brief : Main program body
  6. ******************************************************************************
  7. * @attention
  8. *
  9. * Copyright (c) 2023 STMicroelectronics.
  10. * All rights reserved.
  11. *
  12. * This software is licensed under terms that can be found in the LICENSE file
  13. * in the root directory of this software component.
  14. * If no LICENSE file comes with this software, it is provided AS-IS.
  15. *
  16. ******************************************************************************
  17. */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21. #include "cmsis_os.h"
  22. #include "usb_device.h"
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25. #include "ImC/imc_api.h"
  26. #include "ImC/imc_kernel.h"
  27. #include "benchmarks/benchmark_driver.h"
  28. #if (imcUSE_IMC_EXTENSION)
  29. #include "ImC/imc_extension.h"
  30. #endif
  31. /* USER CODE END Includes */
  32. /* Private typedef -----------------------------------------------------------*/
  33. typedef StaticTask_t osStaticThreadDef_t;
  34. /* USER CODE BEGIN PTD */
  35. /* USER CODE END PTD */
  36. /* Private define ------------------------------------------------------------*/
  37. /* USER CODE BEGIN PD */
  38. #define FRAM_MEM_SIZE (0x100000) // 1 MiB = 2 * 512 * 1024 bytes
  39. #define MRAM_MEM_SIZE (0x800000) // 8 MiB = 2 * 4 * 1024 * 1024 bytes
  40. #define MEM_TYPE_MRAM (1)
  41. #define MEM_TYPE_FRAM (2)
  42. #define MEM_SIZE_HALF (3)
  43. #define MEM_SIZE_FULL (4)
  44. #define MEM_TEST_TYPE MEM_TYPE_MRAM
  45. #define MEM_TEST_SIZE MEM_SIZE_HALF
  46. #define MEM_TEST_ADDR (0x68000000U)
  47. #if !defined(MEM_TEST_TYPE)
  48. #error "Choose the memory type for test!"
  49. #endif
  50. #if !defined(MEM_TEST_SIZE)
  51. #error "Choose the memory size for test!"
  52. #endif
  53. #if (MEM_TEST_TYPE == MEM_TYPE_MRAM)
  54. #if (MEM_TEST_SIZE == MEM_SIZE_FULL)
  55. #define MEMORY_SIZE MRAM_MEM_SIZE
  56. #elif (MEM_TEST_SIZE == MEM_SIZE_HALF)
  57. #define MEMORY_SIZE (MRAM_MEM_SIZE / 2)
  58. #else
  59. #error "Invalid memory size"
  60. #endif
  61. #elif (MEM_TEST_TYPE == MEM_TYPE_FRAM)
  62. #if (MEM_TEST_SIZE == MEM_SIZE_FULL)
  63. #define MEMORY_SIZE FRAM_MEM_SIZE
  64. #elif (MEM_TEST_SIZE == MEM_SIZE_HALF)
  65. #define MEMORY_SIZE (FRAM_MEM_SIZE / 2)
  66. #else
  67. #error "Invalid memory size"
  68. #endif
  69. #else
  70. #error "Invalid memory type"
  71. #endif
  72. /* USER CODE END PD */
  73. /* Private macro -------------------------------------------------------------*/
  74. /* USER CODE BEGIN PM */
  75. /* USER CODE END PM */
  76. /* Private variables ---------------------------------------------------------*/
  77. ADC_HandleTypeDef hadc1;
  78. ADC_HandleTypeDef hadc2;
  79. FDCAN_HandleTypeDef hfdcan1;
  80. I2C_HandleTypeDef hi2c1;
  81. I2C_HandleTypeDef hi2c3;
  82. SPI_HandleTypeDef hspi1;
  83. SPI_HandleTypeDef hspi2;
  84. TIM_HandleTypeDef htim7;
  85. UART_HandleTypeDef huart4;
  86. UART_HandleTypeDef huart1;
  87. UART_HandleTypeDef huart2;
  88. UART_HandleTypeDef huart3;
  89. SRAM_HandleTypeDef hsram1;
  90. SRAM_HandleTypeDef hsram2;
  91. SRAM_HandleTypeDef hsram3;
  92. SRAM_HandleTypeDef hsram4;
  93. /* Definitions for taskSnap */
  94. osThreadId_t taskSnapHandle;
  95. uint32_t taskSnapBuffer[ imcSTACK_SIZE ];
  96. osStaticThreadDef_t taskSnapControlBlock;
  97. const osThreadAttr_t taskSnap_attributes = {
  98. .name = "taskSnap",
  99. .stack_mem = &taskSnapBuffer[0],
  100. .stack_size = sizeof(taskSnapBuffer),
  101. .cb_mem = &taskSnapControlBlock,
  102. .cb_size = sizeof(taskSnapControlBlock),
  103. .priority = (osPriority_t) osPriorityRealtime,
  104. };
  105. /* USER CODE BEGIN PV */
  106. /* USER CODE END PV */
  107. /* Private function prototypes -----------------------------------------------*/
  108. void SystemClock_Config(void);
  109. void PeriphCommonClock_Config(void);
  110. static void MX_GPIO_Init(void);
  111. static void MX_ADC1_Init(void);
  112. static void MX_FDCAN1_Init(void);
  113. static void MX_FMC_Init(void);
  114. static void MX_I2C1_Init(void);
  115. static void MX_I2C3_Init(void);
  116. static void MX_SPI1_Init(void);
  117. static void MX_SPI2_Init(void);
  118. static void MX_TIM7_Init(void);
  119. static void MX_UART4_Init(void);
  120. static void MX_USART1_UART_Init(void);
  121. static void MX_USART2_UART_Init(void);
  122. static void MX_USART3_UART_Init(void);
  123. static void MX_ICACHE_Init(void);
  124. static void MX_GTZC_Init(void);
  125. static void MX_ADC2_Init(void);
  126. void taskEPSRunner(void *argument);
  127. void taskSnapRunner(void *argument);
  128. void taskAIRunner(void *argument);
  129. void taskImcTest(void *argument);
  130. void taskImcTest_2(void *argument);
  131. /* USER CODE BEGIN PFP */
  132. /* USER CODE END PFP */
  133. /* Private user code ---------------------------------------------------------*/
  134. /* USER CODE BEGIN 0 */
  135. #ifdef __cplusplus
  136. extern "C" int _write(int32_t file, uint8_t *ptr, int32_t len) {
  137. #else
  138. int _write(int32_t file, uint8_t *ptr, int32_t len) {
  139. #endif
  140. if( HAL_UART_Transmit(&UART_HANDLER_SBC, ptr, len, len) == HAL_OK ) return len;
  141. else return 0;
  142. }
  143. void vApplicationStackOverflowHook(TaskHandle_t* pxTask , char* pcTaskName ) {
  144. __disable_irq();
  145. //todo: Indicate Overflow with LEDs
  146. printf("stack overflow at %s\r\n", pcTaskName);
  147. for(;;) ;
  148. }
  149. int32_t hal_uart_ifx_send(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len);
  150. int32_t hal_uart_ifx_recv(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len);
  151. int32_t hal_uart_ifx_send(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len)
  152. {
  153. return (HAL_UART_Transmit((UART_HandleTypeDef*)ifx->context, buf, len, 100) == HAL_OK)? len : -1;
  154. }
  155. int32_t hal_uart_ifx_recv(sc03mpd_ifx_t* ifx, uint8_t* buf, uint16_t len)
  156. {
  157. return (HAL_UARTEx_ReceiveToIdle((UART_HandleTypeDef*)ifx->context, buf, len, &len, 500) == HAL_OK)? len : -1;
  158. }
  159. /* USER CODE END 0 */
  160. /**
  161. * @brief The application entry point.
  162. * @retval int
  163. */
  164. int main(void)
  165. {
  166. /* USER CODE BEGIN 1 */
  167. /* USER CODE END 1 */
  168. /* MCU Configuration--------------------------------------------------------*/
  169. /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  170. HAL_Init();
  171. /* USER CODE BEGIN Init */
  172. /* USER CODE END Init */
  173. /* Configure the system clock */
  174. SystemClock_Config();
  175. /* Configure the peripherals common clocks */
  176. PeriphCommonClock_Config();
  177. /* GTZC initialisation */
  178. MX_GTZC_Init();
  179. /* USER CODE BEGIN SysInit */
  180. /* USER CODE END SysInit */
  181. /* Initialize all configured peripherals */
  182. MX_GPIO_Init();
  183. MX_ADC1_Init();
  184. MX_FDCAN1_Init();
  185. MX_FMC_Init();
  186. MX_I2C1_Init();
  187. MX_I2C3_Init();
  188. MX_SPI1_Init();
  189. MX_SPI2_Init();
  190. MX_TIM7_Init();
  191. MX_UART4_Init();
  192. MX_USART1_UART_Init();
  193. MX_USART2_UART_Init();
  194. MX_USART3_UART_Init();
  195. MX_ICACHE_Init();
  196. MX_USB_Device_Init();
  197. MX_ADC2_Init();
  198. /* USER CODE BEGIN 2 */
  199. #if (imcUSE_IMC_KERNEL == 1)
  200. imcInit();
  201. #endif
  202. printf("\r\n\r\n\r\n");
  203. printf("**************************\r\n");
  204. printf("** TEST APP INFORMATION **\r\n");
  205. printf(" - SBC M33 freeRTOS, truztzone, ADC test\r\n");
  206. printf(" - 2023.10.20. 10:00\r\n");
  207. printf("**************************\r\n");
  208. printf("\r\n\r\n\r\n");
  209. /* after SBC boot-up, sbc power gpio pin should be ON */
  210. imc_sbc_power_on(); // delay(param) should be 0ms
  211. /* USER CODE END 2 */
  212. /* Init scheduler */
  213. osKernelInitialize();
  214. /* creation of taskSnap */
  215. #if (imcUSE_IMC_KERNEL == 1)
  216. #if (imcUSE_IMC_EXTENSION)
  217. taskSnapHandle = imcOsThreadNew(vBenchmarkDriver, imcBENCH_NAME, &taskSnap_attributes);
  218. #else
  219. taskSnapHandle = imcOsThreadNew(vConv2d, NULL, &taskSnap_attributes);
  220. #endif
  221. #else
  222. taskSnapHandle = osThreadNew(vBenchmarkDriver, imcBENCH_NAME, &taskSnap_attributes);
  223. #endif
  224. /* Start scheduler */
  225. osKernelStart();
  226. /* We should never get here as control is now taken by the scheduler */
  227. /* Infinite loop */
  228. /* USER CODE BEGIN WHILE */
  229. while (1)
  230. {
  231. /* USER CODE END WHILE */
  232. /* USER CODE BEGIN 3 */
  233. }
  234. /* USER CODE END 3 */
  235. }
  236. /**
  237. * @brief System Clock Configuration
  238. * @retval None
  239. */
  240. void SystemClock_Config(void)
  241. {
  242. RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  243. RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  244. /** Configure the main internal regulator output voltage
  245. */
  246. if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
  247. {
  248. Error_Handler();
  249. }
  250. /** Configure LSE Drive Capability
  251. */
  252. HAL_PWR_EnableBkUpAccess();
  253. __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
  254. /** Initializes the RCC Oscillators according to the specified parameters
  255. * in the RCC_OscInitTypeDef structure.
  256. */
  257. RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE|RCC_OSCILLATORTYPE_LSE
  258. |RCC_OSCILLATORTYPE_MSI;
  259. RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  260. RCC_OscInitStruct.LSEState = RCC_LSE_ON;
  261. RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  262. RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
  263. RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
  264. RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  265. RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  266. RCC_OscInitStruct.PLL.PLLM = 1;
  267. RCC_OscInitStruct.PLL.PLLN = 16;
  268. RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
  269. RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV4;
  270. RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV4;
  271. if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  272. {
  273. Error_Handler();
  274. }
  275. /** Initializes the CPU, AHB and APB buses clocks
  276. */
  277. RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
  278. |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  279. RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  280. RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2;
  281. RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  282. RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  283. if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  284. {
  285. Error_Handler();
  286. }
  287. /** Enable MSI Auto calibration
  288. */
  289. HAL_RCCEx_EnableMSIPLLMode();
  290. }
  291. /**
  292. * @brief Peripherals Common Clock Configuration
  293. * @retval None
  294. */
  295. void PeriphCommonClock_Config(void)
  296. {
  297. RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  298. /** Initializes the common periph clock
  299. */
  300. PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB|RCC_PERIPHCLK_ADC;
  301. PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;
  302. PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_PLLSAI1;
  303. PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSAI1SOURCE_MSI;
  304. PeriphClkInit.PLLSAI1.PLLSAI1M = 1;
  305. PeriphClkInit.PLLSAI1.PLLSAI1N = 24;
  306. PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;
  307. PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;
  308. PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;
  309. PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_48M2CLK|RCC_PLLSAI1_ADC1CLK;
  310. if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  311. {
  312. Error_Handler();
  313. }
  314. }
  315. /**
  316. * @brief ADC1 Initialization Function
  317. * @param None
  318. * @retval None
  319. */
  320. static void MX_ADC1_Init(void)
  321. {
  322. /* USER CODE BEGIN ADC1_Init 0 */
  323. /* USER CODE END ADC1_Init 0 */
  324. ADC_MultiModeTypeDef multimode = {0};
  325. ADC_ChannelConfTypeDef sConfig = {0};
  326. /* USER CODE BEGIN ADC1_Init 1 */
  327. /* USER CODE END ADC1_Init 1 */
  328. /** Common config
  329. */
  330. hadc1.Instance = ADC1;
  331. hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  332. hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  333. hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  334. hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  335. hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  336. hadc1.Init.LowPowerAutoWait = DISABLE;
  337. hadc1.Init.ContinuousConvMode = DISABLE;
  338. hadc1.Init.NbrOfConversion = 1;
  339. hadc1.Init.DiscontinuousConvMode = DISABLE;
  340. hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  341. hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  342. hadc1.Init.DMAContinuousRequests = DISABLE;
  343. hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  344. hadc1.Init.OversamplingMode = DISABLE;
  345. if (HAL_ADC_Init(&hadc1) != HAL_OK)
  346. {
  347. Error_Handler();
  348. }
  349. /** Configure the ADC multi-mode
  350. */
  351. multimode.Mode = ADC_MODE_INDEPENDENT;
  352. if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  353. {
  354. Error_Handler();
  355. }
  356. /** Configure Regular Channel
  357. */
  358. sConfig.Channel = ADC_CHANNEL_1;
  359. sConfig.Rank = ADC_REGULAR_RANK_1;
  360. sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
  361. sConfig.SingleDiff = ADC_SINGLE_ENDED;
  362. sConfig.OffsetNumber = ADC_OFFSET_NONE;
  363. sConfig.Offset = 0;
  364. if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  365. {
  366. Error_Handler();
  367. }
  368. /* USER CODE BEGIN ADC1_Init 2 */
  369. /* USER CODE END ADC1_Init 2 */
  370. }
  371. /**
  372. * @brief ADC2 Initialization Function
  373. * @param None
  374. * @retval None
  375. */
  376. static void MX_ADC2_Init(void)
  377. {
  378. /* USER CODE BEGIN ADC2_Init 0 */
  379. /* USER CODE END ADC2_Init 0 */
  380. ADC_ChannelConfTypeDef sConfig = {0};
  381. /* USER CODE BEGIN ADC2_Init 1 */
  382. /* USER CODE END ADC2_Init 1 */
  383. /** Common config
  384. */
  385. hadc2.Instance = ADC2;
  386. hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  387. hadc2.Init.Resolution = ADC_RESOLUTION_12B;
  388. hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  389. hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE;
  390. hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  391. hadc2.Init.LowPowerAutoWait = DISABLE;
  392. hadc2.Init.ContinuousConvMode = DISABLE;
  393. hadc2.Init.NbrOfConversion = 1;
  394. hadc2.Init.DiscontinuousConvMode = DISABLE;
  395. hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  396. hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  397. hadc2.Init.DMAContinuousRequests = DISABLE;
  398. hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  399. hadc2.Init.OversamplingMode = DISABLE;
  400. if (HAL_ADC_Init(&hadc2) != HAL_OK)
  401. {
  402. Error_Handler();
  403. }
  404. /** Configure Regular Channel
  405. */
  406. sConfig.Channel = ADC_CHANNEL_2;
  407. sConfig.Rank = ADC_REGULAR_RANK_1;
  408. sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
  409. sConfig.SingleDiff = ADC_SINGLE_ENDED;
  410. sConfig.OffsetNumber = ADC_OFFSET_NONE;
  411. sConfig.Offset = 0;
  412. if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
  413. {
  414. Error_Handler();
  415. }
  416. /* USER CODE BEGIN ADC2_Init 2 */
  417. /* USER CODE END ADC2_Init 2 */
  418. }
  419. /**
  420. * @brief FDCAN1 Initialization Function
  421. * @param None
  422. * @retval None
  423. */
  424. static void MX_FDCAN1_Init(void)
  425. {
  426. /* USER CODE BEGIN FDCAN1_Init 0 */
  427. /* USER CODE END FDCAN1_Init 0 */
  428. /* USER CODE BEGIN FDCAN1_Init 1 */
  429. /* USER CODE END FDCAN1_Init 1 */
  430. hfdcan1.Instance = FDCAN1;
  431. hfdcan1.Init.ClockDivider = FDCAN_CLOCK_DIV1;
  432. hfdcan1.Init.FrameFormat = FDCAN_FRAME_CLASSIC;
  433. hfdcan1.Init.Mode = FDCAN_MODE_NORMAL;
  434. hfdcan1.Init.AutoRetransmission = DISABLE;
  435. hfdcan1.Init.TransmitPause = DISABLE;
  436. hfdcan1.Init.ProtocolException = DISABLE;
  437. hfdcan1.Init.NominalPrescaler = 16;
  438. hfdcan1.Init.NominalSyncJumpWidth = 1;
  439. hfdcan1.Init.NominalTimeSeg1 = 2;
  440. hfdcan1.Init.NominalTimeSeg2 = 2;
  441. hfdcan1.Init.DataPrescaler = 1;
  442. hfdcan1.Init.DataSyncJumpWidth = 1;
  443. hfdcan1.Init.DataTimeSeg1 = 1;
  444. hfdcan1.Init.DataTimeSeg2 = 1;
  445. hfdcan1.Init.StdFiltersNbr = 0;
  446. hfdcan1.Init.ExtFiltersNbr = 0;
  447. hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
  448. if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK)
  449. {
  450. Error_Handler();
  451. }
  452. /* USER CODE BEGIN FDCAN1_Init 2 */
  453. /* USER CODE END FDCAN1_Init 2 */
  454. }
  455. /**
  456. * @brief GTZC Initialization Function
  457. * @param None
  458. * @retval None
  459. */
  460. static void MX_GTZC_Init(void)
  461. {
  462. /* USER CODE BEGIN GTZC_Init 0 */
  463. /* USER CODE END GTZC_Init 0 */
  464. /* USER CODE BEGIN GTZC_Init 1 */
  465. /* USER CODE END GTZC_Init 1 */
  466. /* USER CODE BEGIN GTZC_Init 2 */
  467. /* USER CODE END GTZC_Init 2 */
  468. }
  469. /**
  470. * @brief I2C1 Initialization Function
  471. * @param None
  472. * @retval None
  473. */
  474. static void MX_I2C1_Init(void)
  475. {
  476. /* USER CODE BEGIN I2C1_Init 0 */
  477. /* USER CODE END I2C1_Init 0 */
  478. /* USER CODE BEGIN I2C1_Init 1 */
  479. /* USER CODE END I2C1_Init 1 */
  480. hi2c1.Instance = I2C1;
  481. hi2c1.Init.Timing = 0x00707CBB;
  482. hi2c1.Init.OwnAddress1 = 0;
  483. hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  484. hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  485. hi2c1.Init.OwnAddress2 = 0;
  486. hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  487. hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  488. hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  489. if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  490. {
  491. Error_Handler();
  492. }
  493. /** Configure Analogue filter
  494. */
  495. if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  496. {
  497. Error_Handler();
  498. }
  499. /** Configure Digital filter
  500. */
  501. if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
  502. {
  503. Error_Handler();
  504. }
  505. /* USER CODE BEGIN I2C1_Init 2 */
  506. /* USER CODE END I2C1_Init 2 */
  507. }
  508. /**
  509. * @brief I2C3 Initialization Function
  510. * @param None
  511. * @retval None
  512. */
  513. static void MX_I2C3_Init(void)
  514. {
  515. /* USER CODE BEGIN I2C3_Init 0 */
  516. /* USER CODE END I2C3_Init 0 */
  517. /* USER CODE BEGIN I2C3_Init 1 */
  518. /* USER CODE END I2C3_Init 1 */
  519. hi2c3.Instance = I2C3;
  520. hi2c3.Init.Timing = 0x00707CBB;
  521. hi2c3.Init.OwnAddress1 = 0;
  522. hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  523. hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  524. hi2c3.Init.OwnAddress2 = 0;
  525. hi2c3.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  526. hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  527. hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  528. if (HAL_I2C_Init(&hi2c3) != HAL_OK)
  529. {
  530. Error_Handler();
  531. }
  532. /** Configure Analogue filter
  533. */
  534. if (HAL_I2CEx_ConfigAnalogFilter(&hi2c3, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  535. {
  536. Error_Handler();
  537. }
  538. /** Configure Digital filter
  539. */
  540. if (HAL_I2CEx_ConfigDigitalFilter(&hi2c3, 0) != HAL_OK)
  541. {
  542. Error_Handler();
  543. }
  544. /* USER CODE BEGIN I2C3_Init 2 */
  545. /* USER CODE END I2C3_Init 2 */
  546. }
  547. /**
  548. * @brief ICACHE Initialization Function
  549. * @param None
  550. * @retval None
  551. */
  552. static void MX_ICACHE_Init(void)
  553. {
  554. /* USER CODE BEGIN ICACHE_Init 0 */
  555. /* USER CODE END ICACHE_Init 0 */
  556. /* USER CODE BEGIN ICACHE_Init 1 */
  557. /* USER CODE END ICACHE_Init 1 */
  558. /** Enable instruction cache in 1-way (direct mapped cache)
  559. */
  560. if (HAL_ICACHE_ConfigAssociativityMode(ICACHE_1WAY) != HAL_OK)
  561. {
  562. Error_Handler();
  563. }
  564. if (HAL_ICACHE_Enable() != HAL_OK)
  565. {
  566. Error_Handler();
  567. }
  568. /* USER CODE BEGIN ICACHE_Init 2 */
  569. /* USER CODE END ICACHE_Init 2 */
  570. }
  571. /**
  572. * @brief SPI1 Initialization Function
  573. * @param None
  574. * @retval None
  575. */
  576. static void MX_SPI1_Init(void)
  577. {
  578. /* USER CODE BEGIN SPI1_Init 0 */
  579. /* USER CODE END SPI1_Init 0 */
  580. /* USER CODE BEGIN SPI1_Init 1 */
  581. /* USER CODE END SPI1_Init 1 */
  582. /* SPI1 parameter configuration*/
  583. hspi1.Instance = SPI1;
  584. hspi1.Init.Mode = SPI_MODE_MASTER;
  585. hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  586. hspi1.Init.DataSize = SPI_DATASIZE_4BIT;
  587. hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  588. hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  589. hspi1.Init.NSS = SPI_NSS_HARD_OUTPUT;
  590. hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  591. hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  592. hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  593. hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  594. hspi1.Init.CRCPolynomial = 7;
  595. hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
  596. hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
  597. if (HAL_SPI_Init(&hspi1) != HAL_OK)
  598. {
  599. Error_Handler();
  600. }
  601. /* USER CODE BEGIN SPI1_Init 2 */
  602. /* USER CODE END SPI1_Init 2 */
  603. }
  604. /**
  605. * @brief SPI2 Initialization Function
  606. * @param None
  607. * @retval None
  608. */
  609. static void MX_SPI2_Init(void)
  610. {
  611. /* USER CODE BEGIN SPI2_Init 0 */
  612. /* USER CODE END SPI2_Init 0 */
  613. /* USER CODE BEGIN SPI2_Init 1 */
  614. /* USER CODE END SPI2_Init 1 */
  615. /* SPI2 parameter configuration*/
  616. hspi2.Instance = SPI2;
  617. hspi2.Init.Mode = SPI_MODE_MASTER;
  618. hspi2.Init.Direction = SPI_DIRECTION_2LINES;
  619. hspi2.Init.DataSize = SPI_DATASIZE_4BIT;
  620. hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
  621. hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
  622. hspi2.Init.NSS = SPI_NSS_HARD_OUTPUT;
  623. hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  624. hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
  625. hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
  626. hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  627. hspi2.Init.CRCPolynomial = 7;
  628. hspi2.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
  629. hspi2.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
  630. if (HAL_SPI_Init(&hspi2) != HAL_OK)
  631. {
  632. Error_Handler();
  633. }
  634. /* USER CODE BEGIN SPI2_Init 2 */
  635. /* USER CODE END SPI2_Init 2 */
  636. }
  637. /**
  638. * @brief TIM7 Initialization Function
  639. * @param None
  640. * @retval None
  641. */
  642. static void MX_TIM7_Init(void)
  643. {
  644. /* USER CODE BEGIN TIM7_Init 0 */
  645. /* USER CODE END TIM7_Init 0 */
  646. TIM_MasterConfigTypeDef sMasterConfig = {0};
  647. /* USER CODE BEGIN TIM7_Init 1 */
  648. /* USER CODE END TIM7_Init 1 */
  649. htim7.Instance = TIM7;
  650. htim7.Init.Prescaler = 0;
  651. htim7.Init.CounterMode = TIM_COUNTERMODE_UP;
  652. htim7.Init.Period = 65535;
  653. htim7.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  654. if (HAL_TIM_Base_Init(&htim7) != HAL_OK)
  655. {
  656. Error_Handler();
  657. }
  658. sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  659. sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  660. if (HAL_TIMEx_MasterConfigSynchronization(&htim7, &sMasterConfig) != HAL_OK)
  661. {
  662. Error_Handler();
  663. }
  664. /* USER CODE BEGIN TIM7_Init 2 */
  665. /* USER CODE END TIM7_Init 2 */
  666. }
  667. /**
  668. * @brief UART4 Initialization Function
  669. * @param None
  670. * @retval None
  671. */
  672. static void MX_UART4_Init(void)
  673. {
  674. /* USER CODE BEGIN UART4_Init 0 */
  675. /* USER CODE END UART4_Init 0 */
  676. /* USER CODE BEGIN UART4_Init 1 */
  677. /* USER CODE END UART4_Init 1 */
  678. huart4.Instance = UART4;
  679. huart4.Init.BaudRate = 115200;
  680. huart4.Init.WordLength = UART_WORDLENGTH_8B;
  681. huart4.Init.StopBits = UART_STOPBITS_1;
  682. huart4.Init.Parity = UART_PARITY_NONE;
  683. huart4.Init.Mode = UART_MODE_TX_RX;
  684. huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  685. huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  686. huart4.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  687. huart4.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  688. huart4.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  689. if (HAL_UART_Init(&huart4) != HAL_OK)
  690. {
  691. Error_Handler();
  692. }
  693. if (HAL_UARTEx_SetTxFifoThreshold(&huart4, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  694. {
  695. Error_Handler();
  696. }
  697. if (HAL_UARTEx_SetRxFifoThreshold(&huart4, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  698. {
  699. Error_Handler();
  700. }
  701. if (HAL_UARTEx_DisableFifoMode(&huart4) != HAL_OK)
  702. {
  703. Error_Handler();
  704. }
  705. /* USER CODE BEGIN UART4_Init 2 */
  706. /* USER CODE END UART4_Init 2 */
  707. }
  708. /**
  709. * @brief USART1 Initialization Function
  710. * @param None
  711. * @retval None
  712. */
  713. static void MX_USART1_UART_Init(void)
  714. {
  715. /* USER CODE BEGIN USART1_Init 0 */
  716. /* USER CODE END USART1_Init 0 */
  717. /* USER CODE BEGIN USART1_Init 1 */
  718. /* USER CODE END USART1_Init 1 */
  719. huart1.Instance = USART1;
  720. huart1.Init.BaudRate = 115200;
  721. huart1.Init.WordLength = UART_WORDLENGTH_8B;
  722. huart1.Init.StopBits = UART_STOPBITS_1;
  723. huart1.Init.Parity = UART_PARITY_NONE;
  724. huart1.Init.Mode = UART_MODE_TX_RX;
  725. huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  726. huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  727. huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  728. huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  729. huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  730. if (HAL_UART_Init(&huart1) != HAL_OK)
  731. {
  732. Error_Handler();
  733. }
  734. if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  735. {
  736. Error_Handler();
  737. }
  738. if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  739. {
  740. Error_Handler();
  741. }
  742. if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
  743. {
  744. Error_Handler();
  745. }
  746. /* USER CODE BEGIN USART1_Init 2 */
  747. /* USER CODE END USART1_Init 2 */
  748. }
  749. /**
  750. * @brief USART2 Initialization Function
  751. * @param None
  752. * @retval None
  753. */
  754. static void MX_USART2_UART_Init(void)
  755. {
  756. /* USER CODE BEGIN USART2_Init 0 */
  757. /* USER CODE END USART2_Init 0 */
  758. /* USER CODE BEGIN USART2_Init 1 */
  759. /* USER CODE END USART2_Init 1 */
  760. huart2.Instance = USART2;
  761. huart2.Init.BaudRate = 115200;
  762. huart2.Init.WordLength = UART_WORDLENGTH_8B;
  763. huart2.Init.StopBits = UART_STOPBITS_1;
  764. huart2.Init.Parity = UART_PARITY_NONE;
  765. huart2.Init.Mode = UART_MODE_TX_RX;
  766. huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  767. huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  768. huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  769. huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  770. huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  771. if (HAL_UART_Init(&huart2) != HAL_OK)
  772. {
  773. Error_Handler();
  774. }
  775. if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  776. {
  777. Error_Handler();
  778. }
  779. if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  780. {
  781. Error_Handler();
  782. }
  783. if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK)
  784. {
  785. Error_Handler();
  786. }
  787. /* USER CODE BEGIN USART2_Init 2 */
  788. /* USER CODE END USART2_Init 2 */
  789. }
  790. /**
  791. * @brief USART3 Initialization Function
  792. * @param None
  793. * @retval None
  794. */
  795. static void MX_USART3_UART_Init(void)
  796. {
  797. /* USER CODE BEGIN USART3_Init 0 */
  798. /* USER CODE END USART3_Init 0 */
  799. /* USER CODE BEGIN USART3_Init 1 */
  800. /*
  801. * use below code if code is re-generated by .ioc modification
  802. #if CAM_CHANGE_BAUDRATE
  803. UART_HANDLER_CAM.Init.BaudRate = 38400;
  804. #else
  805. UART_HANDLER_CAM.Init.BaudRate = 115200;
  806. #endif
  807. */
  808. /* USER CODE END USART3_Init 1 */
  809. huart3.Instance = USART3;
  810. huart3.Init.BaudRate = 115200;
  811. huart3.Init.WordLength = UART_WORDLENGTH_8B;
  812. huart3.Init.StopBits = UART_STOPBITS_1;
  813. huart3.Init.Parity = UART_PARITY_NONE;
  814. huart3.Init.Mode = UART_MODE_TX_RX;
  815. huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  816. huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  817. huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  818. huart3.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  819. huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  820. if (HAL_UART_Init(&huart3) != HAL_OK)
  821. {
  822. Error_Handler();
  823. }
  824. if (HAL_UARTEx_SetTxFifoThreshold(&huart3, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  825. {
  826. Error_Handler();
  827. }
  828. if (HAL_UARTEx_SetRxFifoThreshold(&huart3, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  829. {
  830. Error_Handler();
  831. }
  832. if (HAL_UARTEx_DisableFifoMode(&huart3) != HAL_OK)
  833. {
  834. Error_Handler();
  835. }
  836. /* USER CODE BEGIN USART3_Init 2 */
  837. /* USER CODE END USART3_Init 2 */
  838. }
  839. /* FMC initialization function */
  840. static void MX_FMC_Init(void)
  841. {
  842. /* USER CODE BEGIN FMC_Init 0 */
  843. /* USER CODE END FMC_Init 0 */
  844. FMC_NORSRAM_TimingTypeDef Timing = {0};
  845. /* USER CODE BEGIN FMC_Init 1 */
  846. /* USER CODE END FMC_Init 1 */
  847. /** Perform the SRAM1 memory initialization sequence
  848. */
  849. hsram1.Instance = FMC_NORSRAM_DEVICE;
  850. hsram1.Extended = FMC_NORSRAM_EXTENDED_DEVICE;
  851. /* hsram1.Init */
  852. hsram1.Init.NSBank = FMC_NORSRAM_BANK1;
  853. hsram1.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE;
  854. hsram1.Init.MemoryType = FMC_MEMORY_TYPE_SRAM;
  855. hsram1.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16;
  856. hsram1.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE;
  857. hsram1.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW;
  858. hsram1.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;
  859. hsram1.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE;
  860. hsram1.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;
  861. hsram1.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;
  862. hsram1.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE;
  863. hsram1.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;
  864. hsram1.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY;
  865. hsram1.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE;
  866. hsram1.Init.NBLSetupTime = 0;
  867. hsram1.Init.PageSize = FMC_PAGE_SIZE_NONE;
  868. hsram1.Init.MaxChipSelectPulse = DISABLE;
  869. /* Timing */
  870. Timing.AddressSetupTime = 15;
  871. Timing.AddressHoldTime = 15;
  872. Timing.DataSetupTime = 30;
  873. Timing.DataHoldTime = 0;
  874. Timing.BusTurnAroundDuration = 2;
  875. Timing.CLKDivision = 16;
  876. Timing.DataLatency = 17;
  877. Timing.AccessMode = FMC_ACCESS_MODE_A;
  878. /* ExtTiming */
  879. if (HAL_SRAM_Init(&hsram1, &Timing, NULL) != HAL_OK)
  880. {
  881. Error_Handler( );
  882. }
  883. /** Perform the SRAM2 memory initialization sequence
  884. */
  885. hsram2.Instance = FMC_NORSRAM_DEVICE;
  886. hsram2.Extended = FMC_NORSRAM_EXTENDED_DEVICE;
  887. /* hsram2.Init */
  888. hsram2.Init.NSBank = FMC_NORSRAM_BANK2;
  889. hsram2.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE;
  890. hsram2.Init.MemoryType = FMC_MEMORY_TYPE_SRAM;
  891. hsram2.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16;
  892. hsram2.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE;
  893. hsram2.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW;
  894. hsram2.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;
  895. hsram2.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE;
  896. hsram2.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;
  897. hsram2.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;
  898. hsram2.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE;
  899. hsram2.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;
  900. hsram2.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY;
  901. hsram2.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE;
  902. hsram2.Init.NBLSetupTime = 0;
  903. hsram2.Init.PageSize = FMC_PAGE_SIZE_NONE;
  904. hsram2.Init.MaxChipSelectPulse = DISABLE;
  905. /* Timing */
  906. Timing.AddressSetupTime = 15;
  907. Timing.AddressHoldTime = 15;
  908. Timing.DataSetupTime = 30;
  909. Timing.DataHoldTime = 0;
  910. Timing.BusTurnAroundDuration = 2;
  911. Timing.CLKDivision = 16;
  912. Timing.DataLatency = 17;
  913. Timing.AccessMode = FMC_ACCESS_MODE_A;
  914. /* ExtTiming */
  915. if (HAL_SRAM_Init(&hsram2, &Timing, NULL) != HAL_OK)
  916. {
  917. Error_Handler( );
  918. }
  919. /** Perform the SRAM3 memory initialization sequence
  920. */
  921. hsram3.Instance = FMC_NORSRAM_DEVICE;
  922. hsram3.Extended = FMC_NORSRAM_EXTENDED_DEVICE;
  923. /* hsram3.Init */
  924. hsram3.Init.NSBank = FMC_NORSRAM_BANK3;
  925. hsram3.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE;
  926. hsram3.Init.MemoryType = FMC_MEMORY_TYPE_PSRAM;
  927. hsram3.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16;
  928. hsram3.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE;
  929. hsram3.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW;
  930. hsram3.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;
  931. hsram3.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE;
  932. hsram3.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;
  933. hsram3.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;
  934. hsram3.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE;
  935. hsram3.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;
  936. hsram3.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY;
  937. hsram3.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE;
  938. hsram3.Init.NBLSetupTime = 0;
  939. hsram3.Init.PageSize = FMC_PAGE_SIZE_NONE;
  940. hsram3.Init.MaxChipSelectPulse = DISABLE;
  941. /* Timing */
  942. Timing.AddressSetupTime = 15;
  943. Timing.AddressHoldTime = 15;
  944. Timing.DataSetupTime = 30;
  945. Timing.DataHoldTime = 0;
  946. Timing.BusTurnAroundDuration = 2;
  947. Timing.CLKDivision = 16;
  948. Timing.DataLatency = 17;
  949. Timing.AccessMode = FMC_ACCESS_MODE_A;
  950. /* ExtTiming */
  951. if (HAL_SRAM_Init(&hsram3, &Timing, NULL) != HAL_OK)
  952. {
  953. Error_Handler( );
  954. }
  955. /** Perform the SRAM4 memory initialization sequence
  956. */
  957. hsram4.Instance = FMC_NORSRAM_DEVICE;
  958. hsram4.Extended = FMC_NORSRAM_EXTENDED_DEVICE;
  959. /* hsram4.Init */
  960. hsram4.Init.NSBank = FMC_NORSRAM_BANK4;
  961. hsram4.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE;
  962. hsram4.Init.MemoryType = FMC_MEMORY_TYPE_SRAM;
  963. hsram4.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16;
  964. hsram4.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE;
  965. hsram4.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW;
  966. hsram4.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;
  967. hsram4.Init.WriteOperation = FMC_WRITE_OPERATION_DISABLE;
  968. hsram4.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;
  969. hsram4.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;
  970. hsram4.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE;
  971. hsram4.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;
  972. hsram4.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY;
  973. hsram4.Init.WriteFifo = FMC_WRITE_FIFO_ENABLE;
  974. hsram4.Init.NBLSetupTime = 0;
  975. hsram4.Init.PageSize = FMC_PAGE_SIZE_NONE;
  976. hsram4.Init.MaxChipSelectPulse = DISABLE;
  977. /* Timing */
  978. Timing.AddressSetupTime = 15;
  979. Timing.AddressHoldTime = 15;
  980. Timing.DataSetupTime = 255;
  981. Timing.DataHoldTime = 0;
  982. Timing.BusTurnAroundDuration = 15;
  983. Timing.CLKDivision = 16;
  984. Timing.DataLatency = 17;
  985. Timing.AccessMode = FMC_ACCESS_MODE_A;
  986. /* ExtTiming */
  987. if (HAL_SRAM_Init(&hsram4, &Timing, NULL) != HAL_OK)
  988. {
  989. Error_Handler( );
  990. }
  991. /* USER CODE BEGIN FMC_Init 2 */
  992. /* USER CODE END FMC_Init 2 */
  993. }
  994. /**
  995. * @brief GPIO Initialization Function
  996. * @param None
  997. * @retval None
  998. */
  999. static void MX_GPIO_Init(void)
  1000. {
  1001. GPIO_InitTypeDef GPIO_InitStruct = {0};
  1002. /* USER CODE BEGIN MX_GPIO_Init_1 */
  1003. /* USER CODE END MX_GPIO_Init_1 */
  1004. /* GPIO Ports Clock Enable */
  1005. __HAL_RCC_GPIOE_CLK_ENABLE();
  1006. __HAL_RCC_GPIOC_CLK_ENABLE();
  1007. __HAL_RCC_GPIOF_CLK_ENABLE();
  1008. __HAL_RCC_GPIOH_CLK_ENABLE();
  1009. __HAL_RCC_GPIOA_CLK_ENABLE();
  1010. __HAL_RCC_GPIOB_CLK_ENABLE();
  1011. __HAL_RCC_GPIOG_CLK_ENABLE();
  1012. __HAL_RCC_GPIOD_CLK_ENABLE();
  1013. HAL_PWREx_EnableVddIO2();
  1014. /*Configure GPIO pin Output Level */
  1015. HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET);
  1016. /*Configure GPIO pin Output Level */
  1017. HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_11, GPIO_PIN_RESET);
  1018. /*Configure GPIO pin Output Level */
  1019. HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_RESET);
  1020. /*Configure GPIO pin Output Level */
  1021. HAL_GPIO_WritePin(GPIOG, GPIO_PIN_6|GPIO_PIN_11|GPIO_PIN_15, GPIO_PIN_RESET);
  1022. /*Configure GPIO pin Output Level */
  1023. HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
  1024. /*Configure GPIO pin Output Level */
  1025. HAL_GPIO_WritePin(GPIOD, GPIO_PIN_3, GPIO_PIN_RESET);
  1026. /*Configure GPIO pins : PC13 PC6 */
  1027. GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_6;
  1028. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1029. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1030. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1031. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  1032. /*Configure GPIO pins : PF6 PF7 PF11 */
  1033. GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_11;
  1034. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1035. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1036. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1037. HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
  1038. /*Configure GPIO pins : PF8 PF9 PF10 */
  1039. GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10;
  1040. GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  1041. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1042. HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
  1043. /*Configure GPIO pin : PB2 */
  1044. GPIO_InitStruct.Pin = GPIO_PIN_2;
  1045. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1046. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1047. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1048. HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  1049. /*Configure GPIO pins : PG6 PG15 */
  1050. GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_15;
  1051. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1052. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1053. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1054. HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
  1055. /*Configure GPIO pin : PC7 */
  1056. GPIO_InitStruct.Pin = GPIO_PIN_7;
  1057. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1058. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1059. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  1060. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  1061. /*Configure GPIO pin : PA8 */
  1062. GPIO_InitStruct.Pin = GPIO_PIN_8;
  1063. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1064. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1065. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1066. HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  1067. /*Configure GPIO pin : PD2 */
  1068. GPIO_InitStruct.Pin = GPIO_PIN_2;
  1069. GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  1070. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1071. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  1072. GPIO_InitStruct.Alternate = GPIO_AF12_SDMMC1;
  1073. HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
  1074. /*Configure GPIO pin : PD3 */
  1075. GPIO_InitStruct.Pin = GPIO_PIN_3;
  1076. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1077. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1078. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1079. HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
  1080. /*Configure GPIO pin : PG11 */
  1081. GPIO_InitStruct.Pin = GPIO_PIN_11;
  1082. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1083. GPIO_InitStruct.Pull = GPIO_NOPULL;
  1084. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  1085. HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
  1086. /* USER CODE BEGIN MX_GPIO_Init_2 */
  1087. /* USER CODE END MX_GPIO_Init_2 */
  1088. }
  1089. /* USER CODE BEGIN 4 */
  1090. /* USER CODE END 4 */
  1091. /* USER CODE BEGIN Header_taskEPSRunner */
  1092. /**
  1093. * @brief Function implementing the taskEPS thread.
  1094. * @param argument: Not used
  1095. * @retval None
  1096. */
  1097. /* USER CODE END Header_taskEPSRunner */
  1098. void taskEPSRunner(void *argument)
  1099. {
  1100. /* USER CODE BEGIN 5 */
  1101. #if (EPS_CAP_VOLT_ADC)
  1102. int capacitor_voltage0 = 0;
  1103. //int capacitor_voltage1 = 0;
  1104. /* Infinite loop */
  1105. for(;;)
  1106. {
  1107. capacitor_voltage0 = measure_voltage(ADC_HANDLER_SBC, EPS_CAP_ID_SBC);
  1108. //capacitor_voltage1 = measure_voltage(ADC_HANDLER_CAM, EPS_CAP_ID_CAM);
  1109. //printf("\t\t\t\t\t\t[EPS] CAP VOLT: %d.%03d, %d.%03d\r\n", capacitor_voltage0/1000, capacitor_voltage0%1000, capacitor_voltage1/1000, capacitor_voltage1%1000);
  1110. if (capacitor_voltage0 < EPS_CAP_VOLT_LOW_THRESHOLD_SBC)
  1111. {
  1112. printf("[EPS] CAP#%d < %dmV (TODO JIT CHECKPOINT)\r\n", EPS_CAP_ID_SBC, EPS_CAP_VOLT_LOW_THRESHOLD_SBC);
  1113. // TODO: JIT CHECKPOINT
  1114. imc_sbc_power_off();
  1115. }
  1116. osDelay(DELAY_AFTER_WORK);
  1117. }
  1118. #endif
  1119. #if (EPS_CAP_VOLT_GPIO)
  1120. /* energy_level: 1~7, and SBC power off when the level is 1 */
  1121. uint8_t energy_level_prev = 8;
  1122. uint8_t energy_level_curr = 8;
  1123. /* Infinite loop */
  1124. for(;;)
  1125. {
  1126. energy_level_curr = imc_get_energy_level();
  1127. if (energy_level_curr != energy_level_prev)
  1128. {
  1129. printf("[EPS] E Level: %d\r\n",
  1130. energy_level_curr);
  1131. if (energy_level_curr <= EPS_SBC_OFF_LEVEL)
  1132. {
  1133. imc_sbc_power_off();
  1134. }
  1135. energy_level_prev = energy_level_curr;
  1136. }
  1137. osDelay(DELAY_AFTER_WORK);
  1138. }
  1139. #endif
  1140. /* USER CODE END 5 */
  1141. }
  1142. /* USER CODE BEGIN Header_taskSnapRunner */
  1143. /**
  1144. * @brief Function implementing the taskSnap thread.
  1145. * @param argument: Not used
  1146. * @retval None
  1147. */
  1148. extern uint16_t ilen;
  1149. /* USER CODE END Header_taskSnapRunner */
  1150. void taskSnapRunner(void *argument)
  1151. {
  1152. /* USER CODE BEGIN taskSnapRunner */
  1153. uint32_t trial = 1;
  1154. sc03mpd_ifx_t ifx = {
  1155. .context = (void*)&UART_HANDLER_CAM,
  1156. .sendif = hal_uart_ifx_send,
  1157. .recvif = hal_uart_ifx_recv,
  1158. };
  1159. uint8_t error_count = 0;
  1160. /* Infinite loop */
  1161. while (1)
  1162. {
  1163. printf ("\r\n\r\n\r\n#%ld\r\n\r\n", trial);
  1164. trial++;
  1165. // osSemaphoreWait(empty, osWaitForever);
  1166. #if EPS_CAP_VOLT_ADC
  1167. SC03MPD_ASSERT(imc_sc03mpd_cap_check (ADC_HANDLER_CAM), "[CAM] FAILED CAP volt", ERROR)
  1168. #endif
  1169. /*
  1170. * 2022. 11. 10. TEST for EPS-SBC-CAM; SBC controls CAM ON/OFF; KETI EPS does NOT wait 2.5s for CAM init.
  1171. */
  1172. imc_cam_power_on();
  1173. // (M33) moved from imc_sc03mpd_init
  1174. printf("[CAM] wait %dms for boot-up\r\n", DELAY_AFTER_POWERUP);
  1175. osDelay (DELAY_AFTER_POWERUP);
  1176. MX_USART3_UART_Init();
  1177. // (M33) moved from imc_sc03mpd_init
  1178. SC03MPD_ASSERT(imc_sc03mpd_init(&ifx), "[CAM] FAILED init", ERROR)
  1179. /* execute once when change CAM default baudrate */
  1180. #if CAM_CHANGE_BAUDRATE
  1181. sc03mpd_set_baud(&ifx, SC03MPD_BDR_115200, 1); // default: SC03MPD_BDR_38400
  1182. printf ("[CAM] OK change default baudrate");
  1183. while (1)
  1184. {
  1185. osDelay(1);
  1186. }
  1187. #endif
  1188. #if 0
  1189. /* image capture and download when GPIO pin 1 UP */
  1190. /* wait for GPIO pin 1 UP */
  1191. osEvent event = osMessageGet(queueSnapReqHandle, osWaitForever);
  1192. if (event.status != osEventMessage)
  1193. continue;
  1194. printf("[CAM] frame capture requested (%lu)\r\n", event.value.v);
  1195. #endif
  1196. /*
  1197. * 2022. 8. 25. fix logical seq. error under V0706 protocol; stop -> read length -> read data -> resume
  1198. * 2022. 8. 26. simply combine three functions; asked by kylee
  1199. */
  1200. SC03MPD_ASSERT(imc_sc03mpd_capture(&ifx), "[CAM] FAILED capture", ERROR)
  1201. /*
  1202. * 2022. 11. 10. TEST for EPS-SBC-CAM
  1203. */
  1204. imc_cam_power_off();
  1205. imcREQUEST_CHECKPOINT();
  1206. // error_count reset
  1207. error_count = 0;
  1208. /* DO SOMETHING */
  1209. #if 0
  1210. if (decodeMyImage((uint8_t*)IMG_RAM_ADDR, ilen, 0, 0, 0, NULL, 1) != DEC_ENON)
  1211. goto ERROR;
  1212. // osSemaphoreRelease(full);
  1213. #else
  1214. printf ("[SBC] wait %dms for DO SOMETHING\r\n", DELAY_DO_SOMETHING);
  1215. osDelay(DELAY_DO_SOMETHING);
  1216. #endif
  1217. continue;
  1218. ERROR:
  1219. /*
  1220. * 2022. 7. 20. failure --> UART stuck continuously; works only after HW reset
  1221. * 2022. 8. 25. add USART3 init. and reset fn.; download or capture failure --> normal
  1222. * 2022. 8. 25. after SC03MPD power off/on, works well after few failures
  1223. * 2022. 11. 11. start of this while loop, CAM init is called
  1224. * 2023. 10. 20. add error_count for handling successive errors
  1225. */
  1226. error_count++;
  1227. printf("[CAM] ERROR HANDLING; CAM OFF > %dms delay > CAM ON\r\n", DELAY_BEFORE_ERR_HANDLING);
  1228. imc_cam_power_off();
  1229. // osSemaphoreRelease(empty);
  1230. osDelay(DELAY_BEFORE_ERR_HANDLING); //imc_sbc_power_off();
  1231. // ERROR 3 times -> SBC reboot
  1232. if (error_count >= CAM_ERROR_COUNT_MAX) {
  1233. error_count = 0;
  1234. printf("[CAM] %d ERRORs continue and SBC OFF\r\n", CAM_ERROR_COUNT_MAX);
  1235. imc_sbc_power_off();
  1236. osDelay(DELAY_DO_SOMETHING);
  1237. }
  1238. continue;
  1239. }
  1240. #if 0
  1241. EXIT:
  1242. osDelay(1000);
  1243. osThreadTerminate(NULL);
  1244. #endif
  1245. /* USER CODE END taskSnapRunner */
  1246. }
  1247. /* USER CODE BEGIN Header_taskAIRunner */
  1248. /**
  1249. * @brief Function implementing the taskAI thread.
  1250. * @param argument: Not used
  1251. * @retval None
  1252. */
  1253. /* USER CODE END Header_taskAIRunner */
  1254. void taskAIRunner(void *argument)
  1255. {
  1256. /* USER CODE BEGIN taskAIRunner */
  1257. /* Infinite loop */
  1258. for(;;)
  1259. {
  1260. osDelay(DELAY_AFTER_WORK);
  1261. }
  1262. /* USER CODE END taskAIRunner */
  1263. }
  1264. void taskImcTest(void *argument) {
  1265. int i = 0;
  1266. while(1) {
  1267. osDelay(1000);
  1268. printf("i=%d\r\n", i++);
  1269. imcREQUEST_CHECKPOINT();
  1270. }
  1271. }
  1272. void taskImcTest_2(void *argument)
  1273. {
  1274. int i = 0;
  1275. while (1)
  1276. {
  1277. osDelay(2000);
  1278. printf("\tj=%d\r\n", i++);
  1279. // imcREQUEST_CHECKPOINT();
  1280. }
  1281. }
  1282. /**
  1283. * @brief Period elapsed callback in non blocking mode
  1284. * @note This function is called when TIM2 interrupt took place, inside
  1285. * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  1286. * a global variable "uwTick" used as application time base.
  1287. * @param htim : TIM handle
  1288. * @retval None
  1289. */
  1290. void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
  1291. {
  1292. /* USER CODE BEGIN Callback 0 */
  1293. /* USER CODE END Callback 0 */
  1294. if (htim->Instance == TIM2) {
  1295. HAL_IncTick();
  1296. }
  1297. /* USER CODE BEGIN Callback 1 */
  1298. /* USER CODE END Callback 1 */
  1299. }
  1300. /**
  1301. * @brief This function is executed in case of error occurrence.
  1302. * @retval None
  1303. */
  1304. void Error_Handler(void)
  1305. {
  1306. /* USER CODE BEGIN Error_Handler_Debug */
  1307. /* User can add his own implementation to report the HAL error return state */
  1308. __disable_irq();
  1309. while (1)
  1310. {
  1311. }
  1312. /* USER CODE END Error_Handler_Debug */
  1313. }
  1314. #ifdef USE_FULL_ASSERT
  1315. /**
  1316. * @brief Reports the name of the source file and the source line number
  1317. * where the assert_param error has occurred.
  1318. * @param file: pointer to the source file name
  1319. * @param line: assert_param error line source number
  1320. * @retval None
  1321. */
  1322. void assert_failed(uint8_t *file, uint32_t line)
  1323. {
  1324. /* USER CODE BEGIN 6 */
  1325. /* User can add his own implementation to report the file name and line number,
  1326. ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  1327. /* USER CODE END 6 */
  1328. }
  1329. #endif /* USE_FULL_ASSERT */